• Title/Summary/Keyword: $^{18}F$ FP-CIT

Search Result 13, Processing Time 0.028 seconds

Synthesis of a Dopamine Transporter Imaging Agent, N-(3-[$^{18}F$]fluoropropyl)-$2{\beta}$-carbomethoxy-$3{\beta}$-(4-iodophenyl)nortropane (도파민운반체 방사성추적자 N-(3-[$^{18}F$Fluoropropyl)-$2{\beta}$-carbomethoxy-$3{\beta}$-(4-iodophenyl)nortropane의 합성)

  • Choe, Yearn-Seong;Oh, Seung-Jun;Chi, Dae-Yoon;Kim, Sang-Eun;Choi, Yong;Lee, Kyung-Han;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.3
    • /
    • pp.298-305
    • /
    • 1999
  • Purpose: N-(3-[$^{18}F$]Fluoropropyl)-$2{\beta}$-carbomethoxy-$3{\beta}$-(4-iodophenyl)nortropane [$^{18}F$]FP-CIT) has been shown to be very useful for imaging the dopamine transporter. However, synthesis of this radiotracer is somewhat troublesome. In this study, we used a new method for the preparation of [$^{18}F$]FP-CIT to increase radiochemical yield and effective specific activity. Materials and Methods: [$^{18}F$]FP-CIT was prepared by N-alkylation of nor-${\beta}$-CIT (2 mg) with 3-bromo-1-[$^{18}F$]fluoropropane in the presence of $Et_3N$ (5-6 drops of $DMF/CH_3CN$, $140^{\circ}C$, 20 min). 3-Bromo-1-[$^{18}F$]fluoropropane was synthesized from $5{\mu}L$ of 3-bromo-1-trifluoromethanesulfonyloxypropane (3-bromopropyl-1-triflate) and $nBu_4N^{18}F$ at $80^{\circ}C$. The final compound was purified by reverse phase HPLC and formulated in 13% ethanol in saline. Results: 3-Bromo-1-[$^{18}F$]fluoropropane was obtained from 3-bromopropyl-1-triflate and $nBu_4N^{18}F$ in 77-80% yield. N-Alkylation of nor-${\beta}$-CIT with 3-bromo-1-[$^{18}F$]fluoropropane was carried out at $140^{\circ}C$ using acetonitrile containing a small volume of DMF as the solvents. The overall yield of [$^{18}F$]FP-CIT was 5-10% (decay-corrected) with a radiochemical purity higher than 99% and effective specific activity higher than the one reported in the literature based on their HPLC data. The final [$^{18}F$]FP-CIT solution had the optimal pH (7.0) and it was pyrogen-free. Conclusion: In this study, 3-bromopropyl-1-triflate was used as the precursor for the [$^{18}F$]fluorination reaction and new conditions were developed for purification of [$^{18}F$]FP-CIT by HPLC. We established this new method for the preparation of [$^{18}F$]FP-CIT, which gave high effective specific activity and relatively good yield.

  • PDF

Method to Reduce the Activity Loss and Pain when Injecting 18F-Florbetaben (18F-Florbetaben 주사 시 Activity 손실과 통증 감소를 위한 방법)

  • Kwon, Hyeong Jin;Choi, Jin Wook;Lee, Hyeong Jin;Woo, Jae Ryong;Kim, Yoo Kyeong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.42-45
    • /
    • 2016
  • Purpose Neuracep is used to other diagnostic evaluations of the brain to estimate beta-amyloid neuritic plaque density in adult patients with cognitive impairment and inspected cognitive impairment. $^{18}F-Florbetaben$ specially has moderate lipophilicity and property of the added ethanol. It is the subject of interest of the patient pain and residual activity after injecting. Our study is effective injection method of the radiopharmaceutical and patient care. So it is for the highest quality image. Materials and Methods Patients were targeted 70 subjects, it was injected mean $259{\pm}74MBq$ to the patients ($^{18}F-FDG$: 20 subjects, $^{18}F-FP-CIT$: 20 subjects, $^{18}F-Florbetaben$: 30 subjects). After injection (reflusing 2 times, reflusing 3 times) using a 3-way set, it measured the residual activity. When injecting $^{18}F-Florbetaben$, we evaluated the effective injection methods(3-way set method and heparin cap method). The average residual activity after the injection was compared using a statistical analysis of SPSS 12.0(ANOVA, t-test analysis). Also, elemental analysis was performed on $^{18}F-Florbetaben$ by GC (Gas Chromatography). Results When reflusing 2 times measured residual activity as follows ($^{18}F-FDG$: 1.48 MBq, $^{18}F-FP-CIT$: 7.4 MBq, $^{18}F-Florbetaben$: 32.6 MBq). And when reflusing 3 times measured residual activity as follows ($^{18}F-FDG$: 1.85 MBq, $^{18}F-FP-CIT$: 3.7 MBq, $^{18}F-Florbetaben$: 36.3 MBq). There was a significant difference when reflusing 2 times(P < 0.05) and reflusing 3 times (P < 0.05). But when reflusing 3 times, there was no significant difference relation FDG and FP-CIT (P > 0.05). $^{18}F-Florbetaben$ Residual activity according to the injection method was a significant difference (P < 0.05). GC analysis results were measured ethanol: 207665 ppm and acceton: 377.4 ppm. Conclusion $^{18}F-Florbetaben$ was high residual activity compared to FDG and FP-CIT. Heparin cap method was effective when $^{18}F-Florbetaben$ was injected. $^{18}F-Florbetaben's$ ethanol component analysis was highly measured. So it is recommended that inject to 6 sec/ml or more in order to reduce the pain.

  • PDF

Salivary Gland Uptake on 18F-FP-CIT PET as a New Biomarker in Patients With Parkinsonism

  • Seo Young Kang;Ji Young Yun;Yeon-Koo Kang;Byung Seok Moon;Hai-Jeon Yoon;Min Young Yoo;Bom Sahn Kim
    • Korean Journal of Radiology
    • /
    • v.24 no.7
    • /
    • pp.690-697
    • /
    • 2023
  • Objective: 18F-FP-CIT positron emission tomography (PET) is known for its high sensitivity and specificity for evaluating striatal dopamine transporter (DAT) binding. Recently, for the early diagnose of Parkinson's disease, many researchers focused on the diagnosis of synucleinopathy in organs involved in non-motor symptoms of Parkinson's disease. We investigated the feasibility of salivary gland uptake on 18F-FP-CIT PET as a new biomarker in patients with parkinsonism. Materials and Methods: A total of 219 participants with confirmed or presumed parkinsonism, including 54 clinically diagnosed idiopathic Parkinson's disease (IPD), 59 suspected and yet undiagnosed, and 106 with secondary parkinsonism, were enrolled. The standardized uptake value ratio (SUVR) of the salivary glands was measured on both early and delayed 18F-FP-CIT PET scans using the cerebellum as the reference region. Additionally, the delayed-to-early ratio (DE_ratio) of salivary gland was obtained. The results were compared between patients with different PET patterns. Results: The SUVR in early 18F-FP-CIT PET scan was significantly higher in patients with IPD pattern compared that in the non-dopaminergic degradation group (0.5 ± 0.19 vs. 0.6 ± 0.21, P < 0.001). Compared with the non-dopaminergic degradation group, the DE_ratio was significantly lower in patients with IPD (5.05 ± 1.7 vs. 4.0 ± 1.31, P < 0.001) or atypical parkinsonism patterns (5.05 ± 1.7 vs. 3.76 ± 0.96, P < 0.05). The DE_ratio was moderately and positively correlated with striatal DAT availability in both the whole striatum (r = 0.37, P < 0.001) and posterior putamen (r = 0.36, P < 0.001). Conclusion: Parkinsonism patients with an IPD pattern exhibited a significant increase in uptake on early 18F-FP-CIT PET and a decrease in the DE_ratio in the salivary gland. Our findings suggest that salivary gland uptake of dual-phase 18F-FP-CIT PET can provide diagnostic information on DAT availability in patients with Parkinson's disease.

Practical Approach for the Clinical Use of Dopamine Transporter Imaging (도파민 운반체 영상의 임상이용을 위한 실제적 접근)

  • Kim, Jae-Seung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.6
    • /
    • pp.425-434
    • /
    • 2008
  • Dopamine transporter imaging is useful in the diagnosis of Parkinson's disease and the most successful technique in the clinical use of neuroreceptor imaging. Recently, several radiopharmaceuticals including I-123 FP-CIT, Tc-99m TRODAT, and F-18 FP-CIT for dopamine transporter imaging have been approved for the routine clinical use in several European countries, Taiwan and Korea, respectively. This review summarized the practical issue for the routine clinical examination of dopamine transporter imaging.

Evaluation of Multiple System Atrophy and Early Parkinson's Disease Using $^{123)I$-FP-CIT SPECT ($^{123)I$-FP-CIT SPECT를 이용한 다중계위축증 및 조기 파킨슨병에서의 평가)

  • Oh, So-Won;Kim, Yu-Kyeong;Lee, Byung-Chul;Kim, Bom-Sahn;Kim, Ji-Sun;Kim, Jong-Min;Kim, Sang-Eun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.1
    • /
    • pp.10-18
    • /
    • 2009
  • Purpose: We investigated quantification of dopaminergic transporter (DAT) and serotonergic transporter (SERT) on $^{123}I$-FP-CIT SPECT for differentiating between multiple systemic atrophy (MSA) and idiopathic Parkinson's disease (IPD). Materials and Methods: N-fluoropropyl-$2{\beta}$-carbomethoxy-$3{\beta}$-4-[$^{123}I$]-iodophenylnortropane SPECT ($^{123}I$-FP-CIT SPECT) was performed in 8 patients with MSA (mean age: $64.0{\pm}4.5yrs$, m:f=6:2), 13 with early IPD (mean age: $65.5{\pm}5.3yrs$, m:f=9:4), and 12 healthy controls (mean age: $63.3{\pm}5.7yrs$, m:f=8:4). Standard regions of interests (ROls) of striatum to evaluate DAT, and hypothalamus and midbrain for SERT were drawn on standard template images and applied to each image taken 4 hours after radiotracer injection. Striatal specific binding for DAT and hypothalamic and midbrain specific binding for SERT were calculated using region/reference ratio based on the transient equilibrium method. Group differences were tested using ANOVA with the postHoc analysis. Results: DAT in the whole striatum and striatal subregions were significantly decreased in both patient groups with MSA and early IPD, compared with healthy control (p<0.05 in all). In early IPD, a significant increase in the uptake ratio in anterior and posterior putamen and a trend of increase in caudate to putamen ratio was observed. In MSA, the decrease of DAT was accompanied with no difference in the striatal uptake pattern compared with healthy controls. Regarding the brain regions where $^{123}I$-FP-CIT binding was predominant by SERT, MSA patients showed a decrease in the binding of $^{123}I$-FP-CIT in the pons compared with controls as well as early IPD patients (MSA: $0.22{\pm}0.1$ healthy controls: $0.33{\pm}0.19$, IPD: $0.29{\pm}0.19$), however, it did not reach the statistical significance. Conclusion: In this study, the differential patterns in the reduction of DAT in the striatum and the reduction of pontine $^{123}I$-FP-CIT binding predominant by SERT could be observed in MSA patients on $^{123}I$-FP-CIT SPECT. We suggest that the quantification of SERT as well as DAT using $^{123}I$-FP-CIT SPECT is helpful to differentiate parkinsonian disorders in early stage.

Radiopharmaceuticals for Neurotransmitter Imaging (뇌 신경물질 운반체 영상용 방사성의약품)

  • Oh, Seung-Jun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.118-131
    • /
    • 2007
  • Neurotransmitter imaging with radiopharmaceuticals plays major role for understanding of neurological and psychiatric disorders such as Parkinson's disease and depression. Radiopharmaceuticals for neurotransmitter imaging can be divided to dopamine transporter imaging radiopharmaceuticals and serotonin trnasporter imaging radiopharmaceuticals. Many kinds of new dopamine transporter imaging radiopharmcaeuticals has a tropane ring and they showed different biological properties according to the substituted functional group on tropane ring. After the first clinical trials with $[^{123}I]{\beta}-CIT$, alkyl chain substituent introduced to tropane ring amine to decrease time for imaging acquisition and to increase selectivity. From these results, $[^{123}I]PE2I$, [18F]FE-CNT, $[^{123}I]FP-CIT$ and $[^{18}F]FP-CIT$ were developed and they showed high uptake on the dopamine transporter rich regions and fast peak uptake equilibrium time within 4 hours after injection. $[^{11}C]McN$ 5652 was developed for serotonin trnasporter imaging but this compound showed slow kinetics and high background radioactivity. To overcome these problems, new diarylsulfide backbone derivatives such as ADAM, ODAM, AFM, and DASB were developed. In these candidates, $[^{11}C]AFM$ and $[^{11}C]DASB$ showed high binding affinity to serotonin transporter and fast in vivo kinetics. This paper gives an overview of current status on dopamine and serotonin transporter imaging radiopharmaceuitcals and the development of new lead compounds as potential radiopharmaceuticals by medicinal chemistry.

Enhanced Efficacy of Human Brain-Derived Neural Stem Cells by Transplantation of Cell Aggregates in a Rat Model of Parkinson's Disease

  • Shin, Eun Sil;Hwang, Onyou;Hwang, Yu-Shik;Suh, Jun-Kyo Francis;Chun, Young Il;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.5
    • /
    • pp.383-389
    • /
    • 2014
  • Objective : Neural tissue transplantation has been a promising strategy for the treatment of Parkinson's disease (PD). However, transplantation has the disadvantages of low-cell survival and/or development of dyskinesia. Transplantation of cell aggregates has the potential to overcome these problems, because the cells can extend their axons into the host brain and establish synaptic connections with host neurons. In this present study, aggregates of human brain-derived neural stem cells (HB-NSC) were transplanted into a PD animal model and compared to previous report on transplantation of single-cell suspensions. Methods : Rats received an injection of 6-OHDA into the right medial forebrain bundle to generate the PD model and followed by injections of PBS only, or HB-NSC aggregates in PBS into the ipsilateral striatum. Behavioral tests, multitracer (2-deoxy-2-[$^{18}F$]-fluoro-D-glucose ([$^{18}F$]-FDG) and [$^{18}F$]-N-(3-fluoropropyl)-2-carbomethoxy-3-(4-iodophenyl)nortropane ([$^{18}F$]-FP-CIT) microPET scans, as well as immunohistochemical (IHC) and immunofluorescent (IF) staining were conducted to evaluate the results. Results : The stepping test showed significant improvement of contralateral forelimb control in the HB-NSC group from 6-10 weeks compared to the control group (p<0.05). [$^{18}F$]-FP-CIT microPET at 10 weeks posttransplantation demonstrated a significant increase in uptake in the HB-NSC group compared to pretransplantation (p<0.05). In IHC and IF staining, tyrosine hydroxylase and human ${\beta}2$ microglobulin (a human cell marker) positive cells were visualized at the transplant site. Conclusion : These results suggest that the HB-NSC aggregates can survive in the striatum and exert therapeutic effects in a PD model by secreting dopamine.

Evaluation of Therapeutic Efficacy using [18F]FP-CIT in 6-OHDA-induced Parkinson's Animal Model

  • Jang Woo Park;Yi Seul Choi;Dong Hyun Kim;Eun Sang Lee;Chan Woo Park;Hye Kyung Chung;Ran Ji Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.9 no.1
    • /
    • pp.3-8
    • /
    • 2023
  • Parkinson's disease is a neurodegenerative disease caused by damage to brain neurons related to dopamine. Non-clinical animal models mainly used in Parkinson's disease research include drug-induced models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine, and genetically modified transgenic animal models. Parkinson's diagnosis can be made using brain imaging of the substantia nigra-striatal dopamine system and using a radiotracer that specifically binds to the dopamine transporter. In this study, 18F-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane was used to confirm the image evaluation cutoff between normal and parkinson's disease models, and to confirm model persistence over time. In addition, the efficacy of single or combined administration of clinically used therapeutic drugs in parkinson's animal models was evaluated. Image analysis was performed using the PMOD software. Converted to standardized uptake value, and analyzed by standardized uptake value ratio by dividing the average value of left striatum by the average value of right striatum obtained by applying positron emission tomography images to the atlas magnetic resonance template. The image cutoff of the normal and the parkinson's disease model was calculated as SUVR=0.829, and it was confirmed that it was maintained during the test period. In the three-drug combination administration group, the right and left striatum showed a high symmetry of more than 0.942 on average and recovered significantly. Images using 18F-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane are thought to be able to diagnose and evaluate treatment efficacy of non-clinical Parkinson's disease.

The Study of Radiation Exposure Reduction by Developing Corpus Striatum Phantom (두개골-선조체 팬텀을 이용한 선량 저감화 방안 연구)

  • Kim, Jung-Soo;Park, Chan-Rok
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.595-603
    • /
    • 2017
  • The study is to produced a brain phantom simulating corpus striatum, which can evaluate the progression of parkinson's disease, to investigate possibility of reducing the brain exposure dose to CT while maintaining optimal image quality during PET-CT examinations. CT scans were performed by varying tube voltage (100, 120 kVp) and tube current (80, 140, 200 mAs) with $^{18}F$ FP-CIT injected into the phantom's hot sphere and background (radioactivity ratio 3:1)(reference condition; 120 kVp, 140 mAs). Estimated effective dose was calculated by using conversion factor according to each condition, and image quality was evaluated by setting SNR and CRChot image evaluation factors. Experimental results showed that the predicted effective dose below the CT imaging reference condition was reduced by at least 10% and by up to 60%, and the predicted effective dose beyond the reference condition was increased by 40%. In addition, there was no significant difference between SNR and CRChot of PET images, and it was confirmed that brain dose decreased with decrease of tube voltage and tube current. At the same time, there was no significant change in the quality of the image in terms of SNR and CRChot despite the change in scan conditions. This fact suggests that the quality of the images acquired under the existing dose conditions can be obtained even at low dose conditions and it is expected that it will be possible to use the brain PET-CT scan as a basic data for the research on reduction of dose and improvement of image quality.

Comparative Performance of Susceptibility Map-Weighted MRI According to the Acquisition Planes in the Diagnosis of Neurodegenerative Parkinsonism

  • Suiji Lee;Chong Hyun Suh;Sungyang Jo;Sun Ju Chung;Hwon Heo;Woo Hyun Shim;Jongho Lee;Ho Sung Kim;Sang Joon Kim;Eung Yeop Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.3
    • /
    • pp.267-276
    • /
    • 2024
  • Objective: To evaluate the diagnostic performance of susceptibility map-weighted imaging (SMwI) taken in different acquisition planes for discriminating patients with neurodegenerative parkinsonism from those without. Materials and Methods: This retrospective, observational, single-institution study enrolled consecutive patients who visited movement disorder clinics and underwent brain MRI and 18F-FP-CIT PET between September 2021 and December 2021. SMwI images were acquired in both the oblique (perpendicular to the midbrain) and the anterior commissure-posterior commissure (AC-PC) planes. Hyperintensity in the substantia nigra was determined by two neuroradiologists. 18F-FP-CIT PET was used as the reference standard. Inter-rater agreement was assessed using Cohen;s kappa coefficient. The diagnostic performance of SMwI in the two planes was analyzed separately for the right and left substantia nigra. Multivariable logistic regression analysis with generalized estimating equations was applied to compare the diagnostic performance of the two planes. Results: In total, 194 patients were included, of whom 105 and 103 had positive results on 18F-FP-CIT PET in the left and right substantia nigra, respectively. Good inter-rater agreement in the oblique (κ = 0.772/0.658 for left/right) and AC-PC planes (0.730/0.741 for left/right) was confirmed. The pooled sensitivities for two readers were 86.4% (178/206, left) and 83.3% (175/210, right) in the oblique plane and 87.4% (180/206, left) and 87.6% (184/210, right) in the AC-PC plane. The pooled specificities for two readers were 83.5% (152/182, left) and 82.0% (146/178, right) in the oblique plane, and 83.5% (152/182, left) and 86.0% (153/178, right) in the AC-PC plane. There were no significant differences in the diagnostic performance between the two planes (P > 0.05). Conclusion: There are no significant difference in the diagnostic performance of SMwI performed in the oblique and AC-PC plane in discriminating patients with parkinsonism from those without. This finding affirms that each institution may choose the imaging plane for SMwI according to their clinical settings.