• Title/Summary/Keyword: $^{14}C$ 선량평가

Search Result 70, Processing Time 0.025 seconds

Preliminary Study on the Internal Dosimetry Program for Carbon-14 at Korean CANDU Reactors (중수로원전에서 발생하는 $^{14}C$에 대한 내부피폭 선량평가 프로그램에 관한 예비 조사)

  • Kong T.Y.;Kim H.C.;Park G.;Hang D.W.;Lee G.J.;Lee S.K.;Park S.C.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.317-320
    • /
    • 2005
  • More strict radioactive regulations are applied to Korean nuclear power plants (NPPs) since ICRP-60 recommendation for radiation protection and has been enforced since 2003. In particular. carbon-14 and tritium concentrations are significantly higher at CANDU reactors compared to PWR reactors and this increases the risk of internal radiation exposure to workers at CANDU NPPs. Thus, it is necessary to estimate the exact amount of internal radiation exposure to workers fur radiological protection at CANDU reactors. In this paper, the current dosimetry method for carbon-14 is analyzed for the establishment of internal dosimetry for carbon-14 at domestic NPPs.

  • PDF

Research on the Transfer Factor for $C^{14}$ Ingestion Dose Evaluation in PWR plant (PWR 발전소에서 $C^{14}$ 섭취선량 평가를 위한 전이계수 연구)

  • Kim Soong-Pyung;Han Young-Ok;Park Kyeong-Rok
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.476-484
    • /
    • 2005
  • This paper is to evaluate rather correctly $C^{14}$ ingestion dose that inhabitants around PWR plants can receive, and draw how to apply TF(Transfer Factor) to evaluate dose by the ingestion of animal products. For this, in this paper, dose assessment and analysis about existing materials related to TF were carried out, and the methodology to present TF was based on dose assessment and analysis result. The ingestion dose calculated using TFs presented by CSA and KEPRI was high or equal compared with SAM(Specific Activity Model) which is the most conservative, on the other hand, TFs given by NEC did not consider the effect according to volume change of animal at all, Therefore, it is judged that models used in the existing codes to asses the $C^{14}$ concentration into animal products must be improved to apply fundamentally hybrid model using transfer factors, that transfer factor on each animal products have to be developed through experiment for applying to our county.

  • PDF

An Effects of Radiation Dose Assessment for Radiation Workers and the Member of Public from Main Radionuclides at Nuclear Power Plants (원전에서 발생하는 주요 방사성핵종들이 방사선작업종사자와 원전 주변주민의 피폭방사선량 평가에 미치는 영향)

  • Kim, Hee-Geun;Kong, Tae-Young;Jeong, Woo-Tae;Kim, Seok-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.1
    • /
    • pp.12-20
    • /
    • 2010
  • In a primary system at nuclear power plants (NPPs), various radionuclides including fission products and corrosion products are generated due to the complex water conditions. Particularly, $^3H,\;^{14}C,\;^{58}Co,\;^{60}Co,\;^{137}Cs,\;and^{131}I$ are important radionuclides in respect of dose assessment for radiation workers and management of radioactive effluents. In this paper, the dominant contributors of radiation exposure for radiation workers and the member of public adjacent to NPPs were reviewed and the process of dose assessment attributable to those contributors were introduced. Furthermore, the analysis for some examples of radiation exposure to radiation workers and the public during the NPP operation was carried out. This analysis included the notable precedents of internal radiation exposure and contamination of demineralized water occurred in Korean NPPs. Particularly, the potential issue about the dose assessment of tritium and carbon-14 was also reviewed in this paper.

호흡경로를 통한 C-14의 체내 피폭선량 평가

  • 신상운
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.919-924
    • /
    • 1995
  • 사람이 숨을 쉬는 동안에 대기중에 포함된 C-14이 인체내에 흡수되는 경로를 살펴보았으며 이로부터 호흡경로를 통한 C-14의 체내 흡수량을 평가하였는데, 호흡중 C-14이 체내에 흡수되는 속도는 다음과 같이 구해졌다. $Q_{i}$(mBq/min)=7.250C$_{a.in}$ - 0.87 여기서 $C_{a,in}$ 은 공기중에 포함된 이산화탄소중의 C-14 농도(mBq/$m\ell$$CO_2$)이다. 이를 토대로 백그라운드 준위보다 약 10,000배 높은 작업환경(400 Bq/$m^2$)에서 8시간 동안 방사선작업을 수행하였을 경우 방사선 작업자는 일반인에 비해 약 4,100 Bq의 C-14 방사능을 추가로 섭취하게 되고, 이로 인해 작업자가 받게 될 체내 피폭선량은 약 0.06 mrem이었다.

  • PDF

Exposure Dose of Thyroid, Breast, and Sexual Gland using a Personal Dosimeter in Multiple CT Examinations (다중 CT 검사 시 개인선량계를 이용한 갑상선, 유방, 생식선의 피폭선량)

  • Kim, Hae-Suk;Kim, Jang-Oh;Lee, Yoon-Ji;Heo, Sung-Hoe;Lee, Chang-Ho;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.345-351
    • /
    • 2020
  • In this study, a dose assessment was conducted on the exposure dose of thyroid, breast and sexual gland using a personal dosimeter in multiple CT examinations currently being conducted in health examinations. The dose assessment was measured by attaching TLD and EPD to the locations of the thyroid, breast and sexual gland during CT examinations of Brain, Brain + C-S, Brain + Low lung, Brain + L-S among CT items. The generated dose of equipment, CTDIvol and DLP, was measured. The study found that effective doses were rated 41.7% higher for thyroid TLD in Brain + C-S CT examinations than for the general public, 156% higher for EPD, 10% for breast EPD in Brain + Low Lung CT examinations, 124.4% higher for reproductive TLD and 339.8% higher for Brain + L-S CT examinations. The CTDIvol and DLP analysis results showed that C-S CTDIvol values were higher than the diagnostic reference levels at 0.6%, Low Lung CTDIvol values at 5.7%, DLP values at 11.8% and L-S CTDIvol values at 1.2%. In order to reduce the exposure dose of patients, indiscriminate examination is reduced and dose limit setting is needed in health examination.

Evaluation the absorbed dose in brain of dental radiography (치과방사선 검사에서 두부(brain)의 흡수선량 평가)

  • Jeon, Woon-Sun;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.6
    • /
    • pp.343-349
    • /
    • 2011
  • This study was aimed to evaluate the absorbed dose in brain of dental radiography. For radiographic exposure, PLD(photoluminescence dosimetry) chips placed in Rando phantom to measurement the absorbed dose to pituitary gland, orbit, maxillary sinus and submandibular glands, thyroid gland, esophagus. Equipments were used Kodak 2200, Kodak 8000C dental radiographic systems and computed tomography(Lightspeed VCT). The absorbed doses were measured at the same exposure parameters and distance by the clinical factor(kV, mA, sec). The result were as follows ; The absorbed dose for intra-oral radiography were 0.02~2.47cGy, the greatest absorbed dose was 2.47cGy for thyroid gland in maxillary right molar projection. the lowest adsorbed dose was 0.02cGy for submandibular glands in lower anterior projection. The absorbed dose for extra-oral radiography were 0.36~3.44cGy of cephalometric method, 0.14~12.82cGy of panoramic method, 8.17~253.63cGy of computed tomography, the greatest adsorbed dose was 253.63cGy for submandibular glands in maxillary CT scan. the lowest adsorbed dose was 0.14cGy for orbit in panoramic method. As a result, extra-oral radiography was measured more than intra-oral radiography. In particular, method which used computed tomography was measured more than 100 times than intra-oral radiography highly. Therefore, you must show a guideline in extra-oral radiography and an effort to reduce absorbed dose is demanded.