• Title/Summary/Keyword: $^{137}Cs$ 감마선 조사장치

Search Result 9, Processing Time 0.028 seconds

감마선 동위원소 핵종비를 이용한 PWR 사용후핵연료의 연소도 결정

  • 박형종;박대규;박광준;서기석;엄성호;민덕기;노성기
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.509-514
    • /
    • 1998
  • ORIGEN-S 전산코드로 계산된 가압경수로(PWR)사용후핵연료 내에 존재하는 방사성핵종비 $^{134}$ Cs/$^{137}$Cs 및 $^{154}$ Eu/$^{137}$Cs 를 감마선 분광실험으로 측정한 값과 비교하여 핵연료의 연소도를 결정하였다. 고리 1호기 및 2호기 사용후핵연료봉에 대한 감마선 분광실험을 한국원자력연구소 조사재시험시설(IMEF)과 조사후시험시설(PIEF)의 시험기기 및 장치를 이용하여 수행하고 이 결과로부터 $^{134}$ Cs/$^{137}$Cs 와 $^{154}$ Eu/$^{137}$Cs 의 핵종비를 측정하였다. 이와 별도로 사용후핵연료의 연소도, 냉각시간, 초기농축도등에 따른 $^{134}$ Cs/$^{137}$Cs 와 $^{154}$ Eu/$^{137}$Cs의 핵종비를 ORIGEN-S 코드로 계산을 하였으며, 이 핵종비와 연소도 사이의 관계를 회귀분석하여 2차 다항식 함수로 유도하였다 이관계식과 감마선 분광실험으로 측정한 $^{134}$ Cs/$^{137}$Cs와 $^{154}$ Eu/$^{137}$Cs 의 핵종비를 이용하여 각각의 연소도를 결정할 수 있었다.

  • PDF

Evaluation of Dose Distribution Using a Radiophotoluminescence Glass Dosimeter in Biobeam8000 Gamma Irradiation Device (유리선량계를 이용한 Biobeam8000 감마선 조사장치의 선량평가)

  • Shin, Sang-Hun;Lee, Sung-Hyun;Son, Ki-Hong;Lee, Hyun-Ho;Kim, Kum-Bae;Jung, Hai-Jo;Ji, Young-Hoon
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.198-205
    • /
    • 2011
  • Gamma irradiator is widely used for cell, animal experiment, irradiation for blood, dose measurement, and education. Biobeam8000 gamma irradiator (STS Steuerungstechnik &. Strahlenschutz GmbH, Braunschweig, Germany, Cs137, 81.4 TBq) that KIRAMS (Korea Institute of Radiological and Medical Science) has is a irradiation device that enables to be used in large-capacity of 7.5 L and extensive area. Cs-137 source moves range of 24 cm back-and-forth in a regular cycle in beaker for uniform irradiation and a beaker that puts a specimen like existing radiation irradiator such as Gammacell3000 rotates $360^{\circ}$ during irradiation. Precise dose information according to the location of radiation source would be needed because of the movement of radiation source, whereas radiation could be uniformly irradiated in comparison with existing gamma irradiator. In this study, dose distribution of the inside beaker located in Biomeam8000 gamma irradiator was measured using glass dosimeter, and dose evaluation and distribution regarding dose linearity and dose reproducibility were implemented based on measurement results. This aims to show guideline for efficient use of irradiator based on measurement result when doing experiment or radiation exposure.

Installation Study of Gamma-ray Irradiation Systems Using Cs-137 and Co-60 Sources (Cs-137 및 Co-60감마선 조사장치 설치 연구)

  • Kim, Wuon-Shik;Hah, Suck-Ho;Hwang, Sun-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.2
    • /
    • pp.123-129
    • /
    • 1986
  • Using Cs-137 and Co-60 gamma-ray irradiation systems, the buildup factors for 2.9 cm thick lead absorber and the air scattering factors are determined for different beam solid angles from$2.4{\pi}{\times}10^{-3}sr\;to\;17.3{\pi}{\times}10^{-3}sr$. The corresponding buildup factors are turned out to be the values from 1.054 to 1.194 and the scattering factors to be the values from 1 to 1.064, respectively. To verify our results, calculated values using these factors and experimental values are compared. The differences between them are not more than 3. 3%.

  • PDF

Determination of TRS-398 Quality Factors for Cs-137 Gamma Rays in Reference Dosimetry (Cs-137 감마선의 선량측정을 위한 TRS-398 선질인자 결정에 관한 연구)

  • Kang, Sang Koo;Rhee, Dong Joo;Kang, Yeong Rok;Kim, Jeung Kee;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.123-127
    • /
    • 2014
  • The Cs-137 irradiator is widely used to irradiate biological samples for radiobiological research. To obtain the accurate outcomes, correct measurements of the delivered absorbed dose to a sample is important. The IAEA protocols such as TRS-277 and TRS-398 were recommended for the Cs-137 reference dosimetry. However in TRS-398 protocol, currently known as the most practical dosimetry protocol, the quality factor ($k_{Q,Q_0}$) for Cs-137 gamma rays is not suggested. Therefore, the use of TRS-398 protocol is currently unavailable for the Cs-137 dosimetry directly. The calculation method previously introduced for high energy photon beams in radiotherapy was used for deriving the Cs-137 beam qualities ($k_{Q,Q_0}$) for the 15 commercially available farmer type ionization chambers in this study. In conclusion, $k_{Q,Q_0}$ values were ranged from 0.998 to 1.002 for Cs-137 gamma rays. These results can be used as the reference and dosimeter calibrations for Cs-137 gamma rays in the future radiobiological researches.

Development of Two-dimensional Prompt-gamma Measurement System for Verification of Proton Dose Distribution (이차원 양성자 선량 분포 확인을 위한 즉발감마선 이차원분포 측정 장치 개발)

  • Park, Jong Hoon;Lee, Han Rim;Kim, Chan Hyeong;Kim, Sung Hun;Kim, Seonghoon;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.42-51
    • /
    • 2015
  • In proton therapy, verification of proton dose distribution is important to treat cancer precisely and to enhance patients' safety. To verify proton dose distribution, in a previous study, our team incorporated a vertically-aligned one-dimensional array detection system. We measured 2D prompt-gamma distribution moving the developed detection system in the longitudinal direction and verified similarity between 2D prompt-gamma distribution and 2D proton dose distribution. In the present, we have developed two-dimension prompt-gamma measurement system consisted of a 2D parallel-hole collimator, 2D array-type NaI(Tl) scintillators, and multi-anode PMT (MA-PMT) to measure 2D prompt-gamma distribution in real time. The developed measurement system was tested with $^{22}Na$ (0.511 and 1.275 MeV) and $^{137}Cs$ (0.662 MeV) gamma sources, and the energy resolutions of 0.511, 0.662 and 1.275 MeV were $10.9%{\pm}0.23p%$, $9.8%{\pm}0.18p%$ and $6.4%{\pm}0.24p%$, respectively. Further, the energy resolution of the high gamma energy (3.416 MeV) of double escape peak from Am-Be source was $11.4%{\pm}3.6p%$. To estimate the performance of the developed measurement system, we measured 2D prompt-gamma distribution generated by PMMA phantom irradiated with 45 MeV proton beam of 0.5 nA. As a result of comparing a EBT film result, 2D prompt-gamma distribution measured for $9{\times}10^9$ protons is similar to 2D proton dose distribution. In addition, the 45 MeV estimated beam range by profile distribution of 2D prompt gamma distribution was $17.0{\pm}0.4mm$ and was intimately related with the proton beam range of 17.4 mm.

Evaluation of Characteristics in the Reference Gamma Radiation Fields for testing of Personnel Dosimetry Performance (개인선량 평가의 성능검증을 위한 기준급 감마선장의 특성 평가)

  • Oh, Jang-Jin;Cho, Dae-Hyung;Han, Seung-Jae;Na, Seong-Ho;Lee, Dew-Hey;Lee, Byung-Soo;Jun, Jae-Shik;Chai, Ha-Seok;Yi, Chul-Young
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.229-236
    • /
    • 1998
  • In order to establish a testing system for personnel dosimetry performance, the radiation fields from photons, beta particles and neutrons are required, in recent, Korea Institute of Nuclear Safety(KINS) established the reference radation fields except neutrons and tested a variety of their properties. As a result of the test, the reference beams were shown to meet satisfactorily not only the standards of the International Organization for Standardization(ISO), but also the standard levels of the developed countries which are intercomparable with the international traceability. This paper describes the reference beam of gamma radiation. The self-designed and established reference radiation fields were investigated and analyzed by ISO and other international standards. The secondary photon contribution and the beam uniformity of the gamma radiation field were measured and evaluated to fulfill those requirements suggested by the ISO-4037. The measured air kerma rate for the $^{137}$Cs and $^{60}$Co gamma fields was 0.1891 $\sim$ 23.4967 $\mu$Gy/s sand 0.5844 $\sim$ 15.9954 $\mu$Gy/s respectively. The uncertainty with 95 % confidence level of the measured air kerma rate was determined to be less than 2.5 % which is comparable to the international reference gamma radiation fields. It was found that the evaluated air kerma calibration factors of Exradin ionization chamber were in good agreement within 0.9 % and 0.03 % with those given by PTB and NIST, respectively. The gamma radiation fields installed at KINS can maintain traceability systems in Korea, Germany and United State.

  • PDF

Preliminary Study on Electron Paramagnetic Resonance(EPR) Signal Properties of Mobile Phone Components for Dose Estimation in Radiation Accident (방사선사고시 피폭선량평가를 위한 휴대전화 부품의 전자상자성공명(EPR) 특성에 대한 예비 연구)

  • Park, Byeong Ryong;Ha, Wi-Ho;Park, Sunhoo;Lee, Jin Kyeong;Lee, Seung-Sook
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.194-201
    • /
    • 2015
  • We have investigated the EPR signal properties in 12 components of two mobile phones (LCD, OLED) using electron paramagnetic resonance (EPR) spectrometer in this study.EPR measurements were performed at normal atmospheric conditions using Bruker EXEXSYS-II E500 spectrometer with X-band bridge, and samples were irradiated by $^{137}Cs$ gamma-ray source. To identify the presence of radiation-induced signal (RIS), the EPR spectra of each sample were measured unirradiated and irradiated at 50 Gy. Then, dose-response curve and signal intensity variating by time after irradiation were measured. As a result, the signal intensity increased after irradiation in all samples except the USIM plastic and IC chip. Among the samples, cover glass(CG), lens, light guide plate(LGP) and diffusion sheet have shown fine linearity ($R^2$ > 0.99). Especially, the LGP had ideal characteristics for dosimetry because there were no signal in 0 Gy and high rate of increase in RIS. However, this sample showed weakness in fading. Signal intensity of LGP and Diffusion Sheet decreased by 50% within 72 hours after irradiation, while signals of Cover Glass and Lens were stably preserved during the short period of time. In order to apply rapidly EPR dosimetry using mobile phone components in large-scale radiation accidents, further studies on signal differences for same components of the different mobile phone, fading, pretreatment of samples and processing of background signal are needed. However, it will be possible to do dosimetry by dose-additive method or comparative method using unirradiated same product in small-scale accident.