• Title/Summary/Keyword: $\zeta$-potential

Search Result 613, Processing Time 0.034 seconds

Development and Performance Evaluation of Positively Charged Porous Filter media for Water Purification System (정수 설비를 위한 양전하가 부가된 다공성 수처리 필터 개발과 성능평가)

  • Lee, Chang-Gun;Joo, Ho-Young;Lee, Jae-Keun;Ahn, Young-Chull;Park, Seong-En
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.95-98
    • /
    • 2006
  • Filtration by fibrous filter is one of the Principle methods used for removing pollutant particles in the liquid. Because of the increasing need to protect both human health and valuable devices from exposure to fine particles, filtration has become more important. Filters have been developed with modified surface charge characteristics to capture and adsorb particles by electrokinetic interaction between the filter surface and particles contained in water. The main purposes of this study are to develop and evaluate the performance evaluation of the apparatus for making a positively charged porous filter media and to analyze the surface characteristics of the filter media for capturing negavitely charged contaminants mainly bacteria and virus from water. The experimental apparatus consists of a mixing tank, a vacuum pumping system, a injection nozzle, a roller press and a controller. The filter media is composed of glass fiber(50-750 nm), cellulose($10-20{\mu}m$) and colloidal charge modifier. The characteristics of filter media is analyzed by SEM(Scanning Electron Microscopy), AFM(Atomic Force Microscopy) and quantified by measuring the zeta potential values.

  • PDF

Preparation and characterization of rutile phase TiO2 nanoparticles and their cytocompatibility with oral cancer cells

  • Vu, Phuong Dong;Nguyen, Thi Kieu Trang;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • v.44 no.3
    • /
    • pp.108-114
    • /
    • 2019
  • In the present study, rutile phase titanium dioxide nanoparticles ($R-TiO_2$ NPs) were prepared by hydrolysis of titanium tetrachloride in an aqueous solution followed by calcination at $900^{\circ}C$. The composition of $R-TiO_2$ NPs was determined by the analysis of X-ray diffraction data, and the characteristic features of $R-TiO_2$ NPs such as the surface functional group, particle size, shape, surface topography, and morphological behavior were analyzed by Fourier-transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, transmission electron microscopy, dynamic light scattering, and zeta potential measurements. The average size of the prepared $R-TiO_2$ NPs was 76 nm, the surface area was $19m^2/g$, zeta potential was -20.8 mV, and average hydrodynamic diameter in dimethyl sulfoxide (DMSO)-$H_2O$ solution was 550 nm. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and morphological observations revealed that $R-TiO_2$ NPs were cytocompatible with oral cancer cells, with no inhibition of cell growth and proliferation. This suggests the efficacy of $R-TiO_2$ NPs for the aesthetic white pigmentation of teeth.

Generation of sub-micron (nano) bubbles and characterization of their fundamental properties

  • Kim, Sangbeom;Kim, Hyoungjun;Han, Mooyoung;Kim, Tschungil
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.382-388
    • /
    • 2019
  • Although nanobubbles attract significant attention, their characteristics and applications have not been thoroughly defined. There are diverse opinions about the definition of nanobubbles and controversy regarding methods that verify their characteristics. This study defines nanobubbles as having a size less than $1{\mu}m$. The generation of these sub-micron (nano) bubbles may be verified by induced coalescence or light scattering. The size of a sub-micron (nano) bubbles may be measured by optical, and confocal laser scanning microscopy. Also, the size may be estimated by the relationship of bubble size with the dissolved oxygen concentration. However, further research is required to accurately define the average bubble size. The zeta potential of sub-micron (nano) bubbles decreases as pH increases, and this trend is consistent for micron bubbles. When the bubble size is reduced to about 700-900 nm, they become stationary in water and lose buoyancy. This characteristic means that measuring the concentration of sub-micron (nano) bubbles by volume may be possible by irradiating them with ultrasonic waves, causing them to merge into micron bubbles. As mass transfer is a function of surface area and rising velocity, this strongly indicates that the application of sub-micron (nano) bubbles may significantly increase mass transfer rates in advanced oxidation and aeration processes.

Preparation and Characterization of Resveratrol Nanoemulsions Stabilized by Self-assembly and Complex Coacervation Consisting of Sodium Alginate, Chitosan, and β-Cyclodextrin

  • Choi, Ae-Jin;Jo, Younghee;Cho, Yong-Jin;Kim, Tae-Eun;Kim, Chong-Tai
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.215-224
    • /
    • 2017
  • Resveratrol was incorporated into various combinations of single- and double-layer nanoemulsions, prepared by self-assembly emulsification and complex coacervation with chitosan, alginate, and ${\beta}$-cyclodextrin, respectively. Resveratrol nanoemulsions were composed of medium-chain trigacylglycerols (MCTs), $Tween^{(R)}$ 80, water, chitosan, alginate, and ${\beta}$-cyclodextrin. The corresponding mixtures were formulated for the purpose of being used as a nutraceutical delivery system. Resveratrol nanoemulsions were obtained with particle sizes of 10-800 nm, with the size variation dependent on the emulsification parameters including the ratio of aqueous phase and surfactant ratio. Resveratrol nanoemulsions were characterized by evaluating particle size, zeta-potential value, stability, and release rate. There were no significant changes in particle size and zeta-potential value of resveratrol nanoemulsions during storage for 28 days at $25^{\circ}C$. The stability of resveratrol in the double-layer nanoemulsions complexed with chitosan or ${\beta}$-cyclodextrin was higher, compared with the single-layer nanoemulsions.

Evaluation of Gelation Characteristics with The Variation of Additive Contents in The Alumina Slurry for Gel Casting Process (겔 캐스팅 공정을 위한 알루미나 슬러리에서의 첨가제 함량 변화에 따른 겔화특성 평가)

  • Chung, J.K.;Oh, C.Y.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.290-295
    • /
    • 2022
  • Recently, the use of high-tech ceramic parts in functional electronic parts, automobile parts and semiconductor equipment parts is increasing. These ceramics materials are required to have high reproducibility, reliability, large size and complex shapes. The researchers initiated the work to develop a new shaping method called gel casting, which allows high performance ceramic materials with a complex shape to be produced. The manufacturing process parameters of gel casting include uniform mixing of the initiator, bubble removal, and slip injection. In this study, we analyzed the dispersion and gelation characteristics according to the change in the additive content of the alumina slurry in the gel casting process. The alumina slurry for gel casting was prepared by mixing a solvent, a monomer and a dispersant through a ball mill. Alumina powder and a gelation initiator were added to the mixed solution, and ball milling was performed for 24 hours. A viscosity of 6,435 cps and a stable zeta potential value were obtained under the conditions of alumina powder content of 55 vol% and dispersant 2.0 wt%. After curing for 12 hours by adding aps 0.1wt%, TEMED 0.2wt%, and Monomer 3, 5wt%, it was possible to separate from the molding cup, confirming that the gelation was completed.

FURTHER LOG-SINE AND LOG-COSINE INTEGRALS

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.769-780
    • /
    • 2013
  • Motivated essentially by their potential for applications in a wide range of mathematical and physical problems, the log-sine and log-cosine integrals have been evaluated, in the existing literature on the subject, in many different ways. Very recently, Choi [6] presented explicit evaluations of some families of log-sine and log-cosine integrals by making use of the familiar Beta function. In the present sequel to the investigation [6], we evaluate the log-sine and log-cosine integrals involved in more complicated integrands than those in [6], by also using the Beta function.

Photografting of PET Fabrics with Vinyl Pyrrolidone and Acryloyl Morpholine Monomers

  • Huang, Weiwei;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.20 no.5
    • /
    • pp.28-34
    • /
    • 2008
  • PET fabrics were photografted under continuous UV irradiation with vinyl pyrrolidone (VP) and acryloylmorpholine(ACMO) as monomers and benzophenone as a hydrogen-abstractable photoinitiator. ACMO can be grafted onto the PET fabrics more efficiently than VP. The grafted PET surfaces were characterized by ATR, ESCA, SEM and zeta potential measurement. ATR and ESCA analysis indicated significant alterations on chemical structure and atomic composition on the surface of the grafted fabrics, where nitrogen content increased with increasing grafting yield. SEM images showed that the fabric surface was covered with the grafted polymers. The zeta potentials and the water wettability of the grafted PET increased with grafting. Also the photografted fabrics showed an increased dyeablity to reactive dyes and increased affinity to various iodine species which imparted anti-bacterial properties.

Study on the Streaming Electrification of Insulating oil Under Electricfield (전계가 가해진 절연유의 유동대전 특성 고찰)

  • 허창수;정중일
    • Electrical & Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.334-341
    • /
    • 1997
  • Streaming electrification on insulating paper and pressboard under D.C. and A.C. electric field was investigated by using paper tubes and oil circulation apparatus. At first, flowing of static charges as measured with no electric field. As the temperature of oil increased, the measured current curve hows peak. As the velocity increased, it shows increasing exponential curve. Then, we applied A.C. and D.C. electric field on paper tube and the current from relaxation tank to earth was measured, which other factors such as temperature and velocity were varied like case of no electric field. The ions in oil carry the charges. So electric field makes asymmetry effect, and electrophoretic effect on ions in oil. We find that as the electric field intensity increased, the charges which were made by electric double layer were increased. The charge vs. velocity curve made peak point at a velocity.

  • PDF

STUDY OF STABILITY AND EFFECT OF COLLOIDAL SILVER IN VARIOUS EMULSIONS (Colloidal Silver Emulsion에서 안정성과 효능, 효과에 관한연구)

  • 지홍근;윤경로
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.1
    • /
    • pp.48-73
    • /
    • 1998
  • Colloid refers to dispersed particles of solid or liquid having diameters of $10^{-5}$ to $10^{-7}$cm, among which colloidal silver is produced by electrolysis. Colloidal silver of various concentrations according to charge and time were formed, antimicrobial activity of colloidal silver was measured. And, the optimum conditions for emulsion were determined by changing the concentration of coloidal silver. Also, the stability of the emulsion was measured by zeta potential and chroma meter by applying colloidal silver to creams(W/S, O/W, MLV)

  • PDF

Physicochemical Adsorption Characteristics of MTBE and Cadmium on Clay Minerals (점토광물에 대한 MTBE와 카드뮴의 물리화학적 흡착 특성)

  • Lim, Nam-Ho;Seo, Hyung-Joon;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.231-239
    • /
    • 2005
  • This study was performed to investigate adsorption characteristics of MTBE and Cd depending upon types of clay minerals md their physicochemical properties. The adsorption characteristics were examined by batch adsorption test on various experimental parameters such as adsorption time, ratio of solution to soil, concentration of contaminants, content of organic matter, pH, and zeta potential. The adsorption efficiency of MTBE or Cd for three types of clays decreased in response to the increase of the ratio of solution to soil whereas their adsorbed amounts increased. MTBE was greatly adsorbed in the decreasing order of vermiculite, bentonite, and CTAB-bentonite while Cd was adsorbed in the decreasing order of bentonite, vermiculite, and CTA-bentonite. An equilibrium isotherm for MTBE was well fitted to Freundlich plotting whereas that for Cd was closely corresponded to Langmuir isotherm. The adsorbed amount of MTBE on bentonite and vermiculite showed the maximum at 1% and 5% of humic acid, thereafter diminished while the adsorbed amount of MTBE on CTAB-bentonite increased in proportion to humic acid. Conversely, the adsorbed amount of Cd on the addition of humic acid continued to increase regardless of types of adsorbents. For all types of adsorbents, adsorbed quantity and adsorption efficiency of Cd have been coincidently increased at pH 8 and they were further enhanced at pH 10 showing 90% adsorption efficiency. Upon pH rose, the zeta potential on each adsorbent began to decrease, while increasing Cd concentration led to decline of zeta potential, which in turn ascribed to lowering dispersion stability that could consequently enhance adsorption capability.