• Title/Summary/Keyword: $\gamma$-Alumina

Search Result 157, Processing Time 0.02 seconds

Preparation of Porous Boehmite Gel from Waste AlCl3 Solution (AlCl3 폐액으로부터 다공성 Boehmite Gel의 제조)

  • Park, Byung-Ki;Lee, Hak-Soo;Kim, Young-Ho;Lee, Jung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.11
    • /
    • pp.864-871
    • /
    • 2004
  • Porous pseudo-boehmite gel was prepared through the aging process of amorphous aluminum hydroxides gel precipitated by the hydrolysis reaction of dilute NaOH solution and AlCl$_3$ solution. In this study, the synthesis method was studied on porous pseudo-boehmite gel having maximum pore volume, as being investigated the changes of crystal structure, infrared rays absorption spectrum, BET surface area and pore structure when the hydrolysis reaction is controlled in the range of pH 7.6~11.6 and the aging process is hold up for 2~24 h at 60~10$0^{\circ}C$. We could find that the gel precipitates deposited in in range of pH 7.6~9.6 were developed into porous pseudo-boehmite which surface area was 250~357 $m^2$/g, pore volume was 0.4~0.7 cc/g and average pore size was 58~l14$\AA$. However, the gel precipitates deposited in range of pH 10.6~11.6 were developed into bayerite which pore volume was very little.

Nickel Supported Adsorbent for Removing Carbon Monoxide (일산화탄소 제거를 위한 니켈 담지 흡착제 제조)

  • Son, Jung-hwa;Kim, Young-ho;Yoon, Songhun;Park, Yong-Ki;Lee, Chul Wee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.868-874
    • /
    • 2008
  • The Ni based adsorbent was prepared by co-precipitation method and its performance for removing carbon monoxide was investigated. Here, silica, aluminium silicate and ${\gamma}$-alumina were used for carriers of catalyst. $Ni(NO_3)_2{\cdot}6H_2O$ and $Ni(CH_3COO)_2{\cdot}4H_2O$ were utilized for Ni precursors. Precipitants were urea and citric acid. After precipitation of Ni salt on the carrier and following reduction using $H_2$ gas, adsorbent was prepared and its performance was analyzed based on EDS, TPR and XRD experiments. In accordance with change of precipitation agents, Ni salts on carrier, carriers and reduction condition. Adsorbent performance for removing carbon monoxide was investigated. The adsorbent with 54.8 wt% Ni prepared using urea precipitant under reduction condition at $500^{\circ}C$ for 3 h exhibited the best CO removal performance.

Quality Control of Tungsten-188/Rhenium-188 Generator (Tungsten-188/Rhenium-188 발생기의 정도관리)

  • Chang, Young-Soo;Jeong, Jae-Min;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.5
    • /
    • pp.425-432
    • /
    • 1998
  • Purpose: For the purpose of using Re-188 as a therapeutic radionuclide, we performed the quality control of the W-188/Re-188 generator system. Materials and Methods: Several quality control tests of the Re-188 eluate from generator were carried out for about 300 days. After elution of Re-188 with normal saline (20 ml), chromatogram and gamma-ray spectrum of Re-188 eluate were obtained. The presence of aluminum which was derived from the alumina bed of the generator was detected by using aluminum ion indicator kit. Re-188 eluate was allowed to decay for several days, and then W-188 breakthrough in the Re-188 eluate was measured by detecting gamma-ray at 227 keY and 290 keV. The pH and the pyrogenicity of the eluate were checked. The Re-188 bolus was concentrated with ion exchange columns. Results: The radioactivity of Re-188 eluate from the generator was $67.4{\pm}7.0%$ of W-188 during 270 days, and it was highest at third day after previous elution. Radiochemical purity of Re-188 eluate obtained from chromatogram was higher than 99%. Gamma-ray spectrum of Re-188 eluate showed a peak at 155 keV. Aluminum ion and W-188 contamination were not detected. The PH of Re-188 eluate was 3 and the concentration yield was 85%. Conclusion: Our experiments and results on quality control tests of Re-188 eluate from W-188/Re-188 generator may be useful for setting W-188/Re-188 generator in hospitals.

  • PDF

Phosphorus Modified Co/Al2O3 Fischer-Tropsch Catalyst for a Slurry Phase CSTR with Enhanced Hydrothermal and Mechanical Stability (수열특성 및 기계적 안정성의 개선으로 슬러리상 CSTR에 적합한 P 첨가 알루미나 기반의 Fischer-Tropsch 합성용 코발트 촉매)

  • Jung, Gyu-In;Ha, Kyoung-Su;Park, Seon-Ju;Kim, Du-Eil;Woo, Min-Hee;Jun, Ki-Won;Bae, Jong-Wook;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.229-237
    • /
    • 2012
  • Phosphorus was incorporated into Co/$Al_2O_3$ catalyst for FTS by impregnating an acidic precursor, phosphoric acid, in ${\gamma}-Al_2O_3$ support to improve the mechanical strength, the hydrothermal stability of the catalyst particle, and the catalytic performance as well. Surface characterization techniques such as FT-IR revealed that $AlPO_4$ phase was generated on the surface of the P-modified catalyst. The addition of phosphorus was found to alleviate the interaction between cobalt and alumina surface, and to increase reducibility of catalyst. The catalytic activity such as $C_{5+}$ productivity and turnover frequency (TOF) was calculated to evaluate catalytic performance. The influence of calcination temperature of the $Al_2O_3$ containing 2 wt.% P on the catalytic performance was also investigated. Through hydrothermal stability test and XRD analysis, the P-modified catalyst had strong resistant to the pressurized and hot $H_2O$. The mechanical strength of the P-modified catalyst was also examined through an in-house fluidized-bed vessel, and it was found that the catalyst fragmentation could be successfully suppressed with P. Taken as a whole, the best performance was shown to be at 1~2 wt.% P in alumina and at the calcination temperature of $500^{\circ}C$.

Particle Size Control by the Addition of PVA and HNO3 in γ-Al2O3 Synthesis Using by Sol-Gel Method (졸-겔법을 이용한 γ-Al2O3 합성 시 PVA와 HNO3 첨가에 따른 입자크기 제어)

  • Um, Myeong-Heon;Kim, Na-Eun;Ha, Beom-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.537-543
    • /
    • 2019
  • Alumina(Al2O3) is a ceramic material used in industry with a range of particle sizes and characteristics. In this study, a boehmite sol was prepared by a hydrolysis and peptizing process using the Sol-Gel method from aluminum isopropoxide (AIP). γ-Al2O3 was prepared by drying and calcining. To prevent particle agglomeration during the manufacturing process, four kinds of polyvinyl alcohol (PVA) with molecular weights of 9,000~10,000, 31,000~50,000, 89,000~98,000, and 130,000 were added and three concentrations of HNO3 (0.1, 0.3, 0.5 molar ratio) were added to determine their effects on the particles. The crystal structure, composition, particle size and shape of the prepared γ-Al2O3 were confirmed through x-ray diffraction (XRD), x-ray fluorescence analyzer (XRF), particle size analyzer (PSA), and field emission scanning electron microscopy (FE-SEM). As a result, γ-Al2O3 with a purity of approximately 98.2% was synthesized, and the particle size decreased and the uniformity increased with increasing ratio of HNO3 addition and PVA molecular weight. From these results, the particle size can be controlled during the manufacturing process of γ-Al2O3 by controlling the addition ratio of PVA and HNO3.

Removal of Odorants by Selective Adsorption from Natural Gas for Protection of Steam Reforming Catalyst in Fuel Cell from Sulfur Poisoning (연료전지용 개질기 촉매의 피독방지를 위한 천연가스 중의 황성분 부취제의 선택적 흡착제거)

  • Oh, Sang-Seung;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.337-343
    • /
    • 2007
  • The reforming catalyst and the electrodes in fuel cells can be poisoned by the organic sulfur compound which is added as an odorant for checking out the leakage of natural gas, and that makes a big problem of system degradation. In this study, various adsorbents, such as silica, ${\gamma}$-alumina, activated carbon, HZSM-5, Ultra-stable Y zeolite (USY), and beta zeolite (BEA), were utilized to remove tetra-hydrothiophene (THT) and tert-butylmercaptan (TBM), and to confirm the performance in the adsorption of those odorants by using a continuous adsorptive bed. The effects of Si/Al ratio of zeolites, adsorption temperature and the type of balance gas (methane or He) on the adsorption performance in the packed bed have been investigated. In addition, the competitive adsorption between TBM and THT on the adsorbents was also estimated. The result shows that H-type BEA zeolite exhibited the highest adsorption capacity for TBM and THT odorant, and the higher amount of THT was removed adsorptively on the same adsorbent than TBM. The physical and chemical adsorption of those compounds on acid sites of zeolite were confirmed by temperature programmed desorption (TPD) and infrared spectrum (IR) analyses.

A QUANTITATIVE STUDY OF THE CHANCE OF CALCIUM, PHOSPHATE, FLUORIDE USING EPMA AFTER IN VITRO DEMINERALIZATION AND REMINERALIZATION OF HUMAN TOOTH ENAMEL (법랑질 표면의 탈회 및 재광화 후 EPMA (electron probe micro-analysis)를 이용한 칼슘, 인, 불소 변화의 정량적 분석)

  • Hong, Kyoung-Sik;Hur, Bock;Lee, Chan-Young;Keum, Ki-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.372-378
    • /
    • 2001
  • The aim of this in vitro study was to analyze the composition of human tooth enamel in terms of three components, Ca, P, and F after demineralization and remineralization in acid buffer solution. A total of 8 human premolars without any defects and cracks were selected and buccal and lingual sides of the teeth were cleaned with an ultrasonic device and pumice without fluoride 5$\times$5mm windows were opened, and other areas were completely covered with 3-coats of nail varnish to prevent from being in contact with demineralized and remineralized solutions. After demineralization process, each tooth was sectioned into two slices, highly polished one of them with$\gamma$-alumina, and then analyzed the composition of the demineralized tooth with EPMA(electron probe micro-analyzer). The other slices were put into the remineralized solution for 10 days, polished, and analyzed in the same manner. These data were statistically analyzed with one sample t-test(p<0.05). The results were as follows. 1. Normal tooth enamel consists of 49.76% Ca, 39.80% P, and 0.28% F. 2. After demineralization, percentage of Ca and P ratio were decreased by about 5.57 and 5.07% respectively. Percentage of F ratio was also decreased by about 0.01%, which was not statistically significant. 3. After remineralization, percentage of Ca, P increased about by 4.47 and 4.35% respectively Percentage of F decreased by about 0.01%, which was not statistically significant. In conclusion, remineralized solution used in our study has the potential to induce the uptake the Ca and P into the pore sites of the demineralized enamel. But, in the oral cavity. there were rapid temperature change, organic matrix that inhibits the movement of the ions, and limitation of continuous contact with this remineralized solution. Therefore, further in vivo study is necessary.

  • PDF