• 제목/요약/키워드: $\beta-adrenergic activity$

검색결과 45건 처리시간 0.024초

Practical and Effective Method for the Solubilization and Characterization of Mammalian ${\beta}$-adrenergic receptor

  • Shin, Chan-Young;Kim, Hee-Jin;Lee, Sang-Bong;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • 제1권2호
    • /
    • pp.188-195
    • /
    • 1993
  • In order to understand the machanism of action and regulation of ${\beta}$-adrenergic receptor in terms of molecular level, the purification of receptor protein has a fundamental importance. Moreover, species differences among avian, amphibian and mammalian ${\beta}$-adrenergic receptors make it more important to purify mammalian ${\beta}$-adrenergic receptor. Because ${\beta}$-adrenergic receptor is an integral membrane protein, it must be solubilized from the membrane for the purification. The purpose of the present study was to solubilize and characterize the mammalian $\beta$-adrenergic receptor from guinea pig lung in quantities by more efficient and practical method eventually to purify receptor. Guinea pig lung membrane preparation was solubilized by sequential treatment of buffers containing low and high concentration of digitonin which are 0.2 and 1.2% respectively. About 50% of the total receptor pool was released by this double extraction procedure. The $\beta$-adrenoceptors in the digitonin extract were identified using the ${\beta}$-adrenergic antagonist, (-)-[$^3H$]-dihydroalprenolol ([$^3H$]DHA). The solubilized receptor retained all of the essential characteristics of membrane-bound receptor, namely saturability; stereoselectivity; high affinity to ${\beta}$-adrenergic drugs. For the measurement of soluble receptor activity, Sephadex G-50 chromatography method has been widely used. Inspite of its accuracy and wide acceptance, this technique employed troublesome column work which required long time to assay the activity of receptor. We employed another methods to measure receptor activity. When using 0.5% polyethylenimine pretreated GF/B glass fiber filter, filtration technique could be used to measure soluble receptor activity. This technique enabled us to reduce the total amount of time to assay by a factor of 4 as well as to detect soluble receptor. In the present study, we could establish more efficient and practical solubilization method of mammalian $\beta$-adrenergic receptor. The rapidity and high yield of this solubilization scheme, together with the favorable recovery of the receptor activity, are significant steps toward the ultimate purification of the mammalian $\beta$-adrenergic receptor. The result of this study together with more convenient purification method could provide large amount of purified receptor with ease for various research purposes.

  • PDF

C-terminal Truncation Mutant of the Human ${\beta}_2$-adrenergic Receptor Expressed in E. coli as a Fusion Protein Retains Ligand Binding Affinity

  • Shin, Jin-Chul;Lee, Sang-Derk;Shin, Chan-Young;Lee, Sang-Bong;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • 제4권1호
    • /
    • pp.97-102
    • /
    • 1996
  • To investigate whether human $\beta$$_2$-adrenergic receptor devoid of the C-terminal two transmembrane helices retain its ligand binding activity and specificity, 5'780-bp DNA fragment of the receptor gene which encodes amino acid 1-260 of human $\beta$$_2$-adrenergic receptor was subcloned into the bacterial fusion protein expression vector and expressed as a form of glutathione-S-transferase (GST) fusion protein in E. coli DH5$\alpha$. The receptor fusion protein was expressed as a membrane bound form which was verified by SDS-PAGE and Western blot. The fusion protein expressed in this study specifically bound $\beta$-adrenergic receptor ligand [$^3$H] Dihydroalprenolol. In saturation ligand binding assay, the $K_{d}$ value was 7.6 nM which was similar to that of intact $\beta$$_2$-adrenergic receptor in normal animal tissue ( $K_{d}$=1~2 nM) and the $B_{max}$ value was 266 fmol/mg membrane protein. In competition binding assay, the order of binding affinity of various adrenergic receptor agonists to the fusion protein was isoproterenol》epinephrine norepinephrine, which was similar to that of intact receptor in normal animal tissue. These results suggest that N-terminal five transmembrane helices of the $\beta$$_2$-adrenergic receptor be sufficient to determine the ligand binding activity and specificity, irrespective of the presence or absence of the C-terminal two transmembrane helices.s.s.s.

  • PDF

Effects of ${\alpha}_1-Adrenergic$ Receptor Stimulation on Intracellular $Na^+$ Activity and Twitch Force in Guinea-Pig Ventricular Muscles

  • Chae, Soo-Wan;Gong, Q.Y.;Wang, D.Y.;Lee, Chin-O.
    • The Korean Journal of Physiology
    • /
    • 제29권2호
    • /
    • pp.203-216
    • /
    • 1995
  • The effects of ${\alpha}_1-adrenergic$ receptor stimulation on membrane potential, intracellular $Na^+$ activity, and twitch force were investigated in ventricular muscles from guinea-pig hearts. Action potentials, intracellular $Na^+$ activity, and twitch force of ventricular papillary muscles were measured simultaneously under various experimental conditions. Stimulation of the ${\alpha}_1-adrenergic$ receptor by phenylephrine produced variable changes in action potential duration, a slight hyperpolarization of the diastolic membrane potential, a decrease in intracellular $Na^+$ activity, and a biphasic inotropic response in which a transient negative inotropic response was followed by a sustained positive inotropic response. These changes were blocked by prazosin, an antagonist of the ${\alpha}_1-adrenergic$ receptor, but not by atenolol, an antagonist of the ${\beta}-adrenergic$ receptor. This indicates that the changes in membrane potential, intracellular $Na^+$ activity, and twitch force are mediated by stimulation of the ${\alpha}_1-adrenergic$ receptor, but not by stimulation of ${\beta}-adrenergic$ receptor. The decrease in intracellular $Na^+$ activity was not observed in quiescent muscles, depending on the rate of the action pontentials in beating muscles. The intracellular $Na^+$ activity decrease was substantially inhibited by tetrodotoxin. However, the decrease in intracellular $Na^+$ activity was not affected by an inhibition of the $Na^+-K^+$ pump. Therefore, the decrease in intracellular $Na^+$ activity mediated by the ${\alpha}_1-adrenergic$ receptor appears to be due to a reduction of $Na^+$ influx during the action potential, perhaps through tetrodotoxin sensitive $Na^+$ channels. Our study also revealed that the decrease in intracellular $Na^+$ activity might be related to the transient negative inotropic response. The intracellular $Na^+$ activity decrease could lower intracellular $Ca^{2+}$ through the $Na^+-Ca^{2+}$ exchanger and thereby produce a decline in twitch force.

  • PDF

Effects of ${\alpha}-,\;{\beta}-Adrenergic$, and Calcium Channel Blockers on Renin- Angiotensin System in Perfused Rat Heart

  • Park, Chang-Gyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권1호
    • /
    • pp.55-62
    • /
    • 1998
  • ${\alpha},\;{\beta}-Adrenergics$, and calcium channels were known to be related to inducing cardiac hypertrophy. Recently, it was reported that the cardiac renin-angiotensin system (RAS) was an important factor in ventricular hypertrophy. The present study was aimed to investigate the effects of ${\alpha},\;{\beta}-adrenergic$, and calcium channel blockers that might be involved in the regulation of cardiac RAS. The reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the expression of renin gene in the perfused rat heart. Changes in angiotensin converting enzyme (ACE) activity and cyclic AMP (cAMP) content which were thought to play a role in inducing cardiac hypertrophy were measured in the perfused rat heart. The expression of renin gene was not only increased by isoproterenol with metoprolol-pretreatment but also increased by vasopressin treatment in the presence of calcium channel blocker, nifedipine or verapamil. Either prazosin alone or norepinephrine with prazosin-pretreatment significantly increased the ACE activity. However, isoproterenol with metoprolol-pretreatment significantly decreased the ACE activity. On the other hand, the ACE activity was not changed by vasopressin, nifedipine, or verapamil treatments. The content of cAMP was significantly increased by either isoproterenol or vasopressin treatment. According to these results, renin gene expression was associated with ${\beta}2$ - adrenoceptor and calcium channel. ACE activity was associated with ${\alpha}-\;and{\beta}2$ - adrenoceptor. In conclusion, ${\beta}2$ - adrenoceptor was important in cardiac renin gene expression and ACE activity and ${\alpha},\;{\beta}$ -adrenergic, and calcium channel blockers might be involved in the regulation of cardiac RAS in a complicated way.

  • PDF

고지방식이를 섭취시킨 흰쥐에서 $\beta$-adrenergic 활성의 증가에 의한 Capsaicin의 체지방 감소효과 (Body-fat Suppressive Effects of Capsaicin through $\beta$-adrenergic Stimulation in Rats Fed a High-fat Diet)

  • 주종재
    • Journal of Nutrition and Health
    • /
    • 제32권5호
    • /
    • pp.533-539
    • /
    • 1999
  • The effects of capsaicin, a pungent principle of hot red pepper, on body fat gain, balance serum lipid values were investigated in rats fed a high-fat(30%) diet. Administration of capsaicin by dietary administration caused a complete cessation of increased in body weight and fat gain induced by the high-fat diet. However, energy intake and body protein gain were not affected by capsaicin. Therefore, the suppression of body fat gain by capsaicn was believed due to an increased in energy expenditure. Simultaneous administration of capsaicin and a $\beta$-adrenergic blocker, propranolo, resulted in the inhibition of changes in body fat gain by capsaicin without remained unchanged, indicating an increase in the number of mitochondria in brown adipose tissue. Therefore, it appears that capsaicin possesses potent body fat suppressive effects mediated by $\beta$-adrenergic stimulation in which brown adipose tissue may be involved. On the other hand, capsaicin had no effects on serum triglyceride, total cholesterol or HDL-cholesterol levels. These results are in contrast to those reported by other investigators. Perhaps expression of the effects of capsaicin on plasma lipids is a rather complicated process, dependent on the type of diet administered, fat content of the diet, period and route of capsaicin administration, and species and strain of animals used.

  • PDF

소(牛) 식도구 평활근의 Adrenergic receptor 존재부위에 관한 연구 (Localization of adrenergic receptors in bovine esophageal groove)

  • 강동묵;조제열;박전홍;양일석
    • 대한수의학회지
    • /
    • 제33권4호
    • /
    • pp.617-622
    • /
    • 1993
  • The preliminary studies on the localization of adrenoceptors were performed on smooth muscle strips of bovine esophageal groove. The mechanical activity of the muscle strip was recorded isometrically in vitro.w In the bottom circular muscle strips. the excitatory ${\alpha}-adrenergic$ responses were not blocked by tetrodotoxin$(2.1{\times}10^{-6}M)$ and denervation which was carried by cold storage of strips for 48 hrs in Tyrode's solution at $5-6{^{\circ}C}$ without oxygen supply. These excitatory ${\alpha}-adrenergic$ responses were partially blocked by atropine. In the lip longitudinal muscle strips, the inhibitory${\beta}-adrenergic$ responses were not blocked by pretreatment of tetrodotoxin and atropine. The results suggest that ${\beta}-adrenergic$ receptors mediating relaxations are located on the postsynaptic smooth muscle cells, whereas ${\beta}-adrenergic$ receptors mediating contractions are located both in the smooth muscle cells and in the cholinergic neurones.

  • PDF

A Monoclonal Anti-peptide Antibody against $\beta$2-adrenergic Receptor Which Specifically Binds [$^{3}H$] dihydroalprenolol

  • Shin, Chan Young;Noh, Min Su;Lee, Sang Derk;Lee, Sang Bong;Ko, Kwang Ho
    • Biomolecules & Therapeutics
    • /
    • 제3권4호
    • /
    • pp.266-272
    • /
    • 1995
  • The analysis of membrane receptors for hormones and neurotransmitters has progressed considerably by pharmacological and biochemical means and more recently through the use of specific antibodies. To generate and characterize a moloclonal antibody against $\beta$-adrenergic receptor, a synthetic $\beta$2-adrenergic receptor peptide (Phe-Gly-Asn-Phe-Trp-Cys-Phe-Trp-Thr-Ser-lle-Asp-Val-Leu) which may comprise part of $\beta$-adrenergic receptor ligand binding pocket was coupled to Keyhole Limpet Hemocyanin (KLH) and used as an immunogen. Male BALB/C mice were immunized with this antigen and the immunized spleen was fused with myeloma SP2/0-Ag14 cells to produce monoclonal antibodies. Two clones were obtained but one of monoclonal antibodies, mAb5G09, was used throughout in this study because the other clone, mAb5All showed weak immunoreactivity against KLH as well. The mouse monoclonal antibody mAb5G09 produced in this study showed immunoreactivity to peptide-KLH conjugates and also to human A43l cells and guinea pig lung $\beta$2-adrenergic receptor as revealed by ELISA and western blot. In the course of determination of the effects of mAb5G09 on $\beta$-receptor ligand binding, it was observed that mAb5G09 specifically bound $\beta$-adrenergic radioligand [$^3$H]dihydroalprenolol (DHA) with a dissociation constant (Kd) of 60 nM. The [$^3$H]DHA binding activity of mAb5G09 had characteristics of immunoglobulins and the binding activity was not observed in the control anti-KLH monoclonal antibody. The monoclonal antibody, mAb5G09 produced in this study may provide useful models for the study of the structure of receptor binding sites.

  • PDF

Production rind Characterization of the Polyclonal Anti-peptide Antibody for $\beta$-adrenergic Receptor

  • Kim, Hee-Jin;Shin, Chan-Young;Sang Bong lee;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • 제2권4호
    • /
    • pp.303-309
    • /
    • 1994
  • The analysis of membrane receptors for hormones and neurotransmitters has progressed considerably by pharmacological and biochemical means and more recently through the use of specific antibodies. Two kinds of antibodies could be produced, one is from synthetic peptides and the other from proteins such as purified receptor. Anti-peptide antibodies gave some advantages; epitope is evident and also receptor purification in quantity is not prerequisite. It can be also applied to the study of receptor structure-activity relationship. The purpose of the present study was 1) to produce and characterize a polyclonal antibody against a synthetic $\beta$2-adrenergic receptor peptide(Phe-Gly-Asn-Phe-Trp-Cys-Phe-Trp-Thr-Ser-Ile-Asp-Val-Leu) and 2) to determine the effects of this antibody on the $\beta$-adrenergic receptor ligand interaction. The peptide sequence contains an amino acid residue such as Asp-113 which was identified as one of important component for receptor-ligand interaction in site-directed mutagenesis studies. Production of antibody was performed by immunization of rabbits through popliteal lymph node with the peptide coupled with Keyhole Limpet Hemocyanin (KLH). The titer of antibody against this peptide was 1 : 1000. The anti-peptide antibody was able to detect a 67 kDa protein band in western blot corresponding to the molecular weight of the $\beta$-adrenergic receptor in partially purified receptor fraction derived from guinea pig lung. The antisera inhibited the specific binding of [$^3$H]dihydroalprenolol to $\beta$-adrenergic receptor in a concentration-dependent manner. The results from this study suggest that the peptide sequence selected in the present study is important for the receptor ligand interaction.

  • PDF

Xylazine의 진정효과와 α-adrenergic 수용체 봉쇄약물의 길항효과 (Xylazine-induced depression and its antagonism by α-adrenergic blocking agents)

  • 김충희;하대식;김양미;김종수
    • 대한수의학회지
    • /
    • 제33권1호
    • /
    • pp.71-80
    • /
    • 1993
  • The central nervous system depressant effect of xylazine and xylazine-ketamine was studied in chicken and mice. Intraperitoneal injection of xylazine(1~30 mg/kg) and xylazine(1~30 mg/kg)-ketamine(100 mg/kg) induced a loss of the righting reflex in chicken and mice, respectively. These effects of xylazine were dose-dependent. The results obtained were as follows; 1. The effect of xylazine-induced depression was antagonized by adrenergic antagonists having ${\alpha}_2$-blocking activity(yohimbine, tolazoline, piperoxan and phentolamine). 2. Yohimbine was most effective in the reduction of the CNS depression by xylazine. 3. Phenoxybenzamine and prazosin did not reduced CNS depression by xylazine in both species. 4. Labetalol (${\alpha}_1$, ${\beta}_1$-adrenergic antagonist) and propranolol(${\beta}$-adrenergic blocking agent) were not effective in reducing xylazine induced depression. 5. Cholinergic blocking agents (atropine and mecamylamine), a dopaminergic antagonist (Haloperidol), a histamine $H_1$-antagonist(chlorpheniramine), a histamine $H_2$-antagonist(cimetidine), a serotonergic-histamine $H_1$ antagonist(cyproheptadine) were not effective in reducing xylazine-induced depression. 6. Xylazine-induced depression is mediated by ${\alpha}_2$-adrenergic receptors and appears not to be involved in cholinergic, dopaminergic, serotonergic or histaminergic pathways.

  • PDF

Tumor Necrosis Factor ${\alpha}$ up-regulates the Expression of beta2 Adrenergic Receptor via NF-${\kappa}B$-dependent Pathway in Osteoblasts

  • Baek, Kyunghwa;Kang, Jiho;Hwang, Hyo Rin;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제38권3호
    • /
    • pp.121-126
    • /
    • 2013
  • Tumor necrosis factor alpha ($TNF{\alpha}$) is a multifunctional inflammatory cytokine that regulates various cellular and biological processes. Increased levels of $TNF{\alpha}$ have been implicated in a number of human diseases including diabetes and arthritis. Sympathetic nervous system stimulation via the beta2-adrenergic receptor (${\beta}2AR$) in osteoblasts suppresses osteogenic activity. We previously reported that $TNF{\alpha}$ upregulates ${\beta}2AR$ expression in murine osteoblastic cells and that this modulation is associated with $TNF{\alpha}$ inhibition of osteoblast differentiation. In our present study, we explored whether $TNF{\alpha}$ induces ${\beta}2AR$ expression in human osteoblasts and then identified the downstream signaling pathway. Our results indicated that ${\beta}2AR$ expression was increased in Saos-2 and C2C12 cells by $TNF{\alpha}$ treatment, and that this increase was blocked by the inhibition of NF-${\kappa}B$ activation. Chromatin immunoprecipitation and luciferase reporter assay results indicated that NF-${\kappa}B$ directly binds to its cognate elements on the ${\beta}2AR$ promoter and thereby stimulates ${\beta}2AR$ expression. These findings suggest that the activation of $TNF{\alpha}$ signaling in osteoblastic cells leads to an upregulation of ${\beta}2AR$ and also that $TNF{\alpha}$ induces ${\beta}2AR$ expression in an NF-${\kappa}B$-dependent manner.