• Title/Summary/Keyword: $\alpha$-Terpinene

Search Result 83, Processing Time 0.024 seconds

Volatile Compounds of Citron (Citrus Junos) Peel extracted by Supercritical Carbon Dioxide (초임계 이산화탄소로 추출한 유자껍질의 향기성분)

  • 김영언;김인환;김흥만;이영철
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.4
    • /
    • pp.500-503
    • /
    • 1996
  • Volatile compounds were extracted from freeze-dried citron peel(Citrus junos) using supercritical CO2 under 4,000psi at 40$\beta$. Four fractions were obtained with consumption of CO2. Volatile compounds of extracts were analyzed by GC-MSD. Yield of vol atile compounds from citron peel was 0.11g/CO2($\ell$) and maximum yield was 8.812g/kg. Major volatile compounds of extracts were dl-limonene, Υ-terpinene, linalool, sabinene, $\beta$-myrcene, $\alpha$-pinene, $\beta$-farnesene, $\alpha$-terpineol and terpinolene. $\alpha$-Pinene, $\beta$-myrcene and dl-limonene in the fractions decreased gradually, while $\alpha$-terpineol and $\beta$-farnesene increased as the consumption of CO2 increased.

  • PDF

Comparison of volatile flavor compounds of yuzu, kumquat, lemon and lime (유자, 금귤, 레몬 및 라임의 휘발성 향기성분의 비교)

  • Hong, Young Shin;Lee, Ym Shik;Kim, Kyong Su
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.394-405
    • /
    • 2017
  • This study was conducted to confirm the usefulness of essential oil components in yuzu and kumquat cultivated in Korea for comparison with those in lemon and lime. The volatile flavor compounds in citrus fruits (yuzu, kumquat, lemon and lime) were extracted for 3 h with 100 mL redistilled n-pentane/diethylether (1:1, v/v) mixture, using a simultaneous steam distillation and extraction apparatus (SDE). The volatile flavor compositions of the samples were analyzed by gas chromatography-mass spectrometry (GC-MS). The aroma compounds analyzed were 104 (3,713.02 mg/kg) in yuzu, 87 (621.71 mg/kg) in kumquat 103 (3,024.69 mg/kg) in lemon and 106 (2,209.16 mg/kg) in lime. Limonene was a major volatile flavor compound in four citrus fruits. The peak area of limonene was 35.03% in yuzu, 63.82% in kumquat, 40.35% in lemon, and 25.06% in lime. In addition to limonene, the major volatile flavor compounds were ${\gamma}$-terpinene, linalool, ${\beta}$-myrcene, (E)-${\beta}$-farnesene, ${\alpha}$-pinene and ${\beta}$-pinene in yuzu, and ${\beta}$-myrcene, ${\alpha}$-pinene, (Z)-limonene oxide, (E)-limonene oxide, geranyl acetate and limonen-10-yl acetate in kumquat. Furthermore, ${\gamma}$-terpinene, ${\beta}$-pinene, ${\beta}$-myrcene, geranyl acetate, neryl acetate and (Z)-${\beta}$-bisabolene in lemon and ${\gamma}$-terpinene, ${\beta}$-pinene, (Z)-${\beta}$-bisabolene, neral, geranial and neryl acetate in lime were also detected. As a result, it was confirmed that the composition of volatile flavor compounds in four citrus fruits was different. Also, yuzu and kumquat are judged to be worthy of use alternatives for lemon and lime widely used in the fragrance industry.

A Study on the Characteristics of Monoterpene Emissions from Different Wood Species (건조목재의 모노테르펜 배출특성에 관한 연구)

  • Park Hyun Ju;Kim Jo Chun;Park Byung Dae;Park Kang Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.145-151
    • /
    • 2006
  • As the concerns about indoor air quality (IAQ) increase in recent years, lots of research works are under way to investigate the influence of volatile organic compounds (VOCs) emitted from building products on the IAQ. One of the regulations for the IAQ is the level of total VOCs (TVOCs) from building products, assuming that the TVOCs are suspected to cause many health problems such as skin irritation, asthma, and allergy. However, the presence of biogenic VOCs, or natural VOCs (NVOCs) is believed to be beneficial to human health. Therefore, this study attempted to investigate chemical species and the NVOCs compositions of solid lumbers from different wood species. It was found that major VOC components were monoterpenes such as $\alpha$-pinene, $\beta$-pinene, d-limonene, camphene, $\alpha$-terpinene, $\gamma$-terpinene etc.

Chemical Composition and Antimicrobial Activity of Cone Volatile oil of Cupressus macrocarpa Hartwig from Nilgiris, India

  • Manimaran, S.;Themozhil, S.;Nanjan, M.J.;Suresh, B.
    • Natural Product Sciences
    • /
    • v.13 no.4
    • /
    • pp.279-282
    • /
    • 2007
  • The aim of the present study was to investigate the various chemical components present in the cone volatile oil of Cupressus macrocarpa and also determine its antimicrobial activity. Totally 13 compounds were identified with 99.99% by GC-MS analysis. The major compounds identified were terpinene-4-ol (19.42%), dinopol (15.63%), ${\alpha}$-pinene (13.58%), and ${\beta}$-pinene (12.16%). The antimicrobial activity was carried out for the oil and a 2% cream formulation using cup plate method by measuring the zone of inhibition. The gram positive organisms used were Bacillus subtilis, Staphylococcus aureus, Bacillus megaterium, and Bacillus cogulans. The gram negative organisms used were Escherichia coli, Kleibseilla pneumonia, Pseudomonas aeruginosa and Salmonella typhi. In vitro antifungal studies were also carried out by using organisms, Candida albicans, Aspergillus flavus, Trichoderma lignorum and Cryptococcus neoformans. The standard drugs used were penicillin ($100{\mu}g/mL$), gentamycin ($100{\mu}g/mL$) and griseofulvin ($100{\mu}g/mL$) for gram positive bacteria, gram negative bacteria and fungi respectively. Both oil and cream formulation showed good activity against fungi than bacteria. This study is being reported for the first time on cone volatile oil of this plant.

Changes of Components of Citrus Sudachi Juice Heated at Various Temperatures (가열온도에 따른 영귤 과즙의 성분 변화)

  • Kim, Young-Dong;Lee, Young-Chul;Oh, Young-Ju;Kang, Young-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.238-244
    • /
    • 2001
  • The study was performed to investigate the changes of components and volatiles in citrus sudachi juice heated at 40, 50, 60, 70, 80 and $90^{\circ}C$. Total acidity, $^{\circ}Brix$, pH, organic acids, free amino acids, vitamin C, naringin, hesperidine, neohesperidin and volatiles were analyzed in fresh and heated citrus sudachi juices. The major organic acids were citric, malic and oxalic acids and their total contents were 5.27-5.48%. Citric acid content exceeded 92%, malic and oxalic acids were 3.6 and 3.2% in total orgainc acids. The organic acids decreased as heating temperature increased, but the their decreasing contents were 0.3% of total oraganic acids. Sixteen kinds of free amino acids presented in citrus sudachi juice. Major free amino acids were alanine, threonine, proline, aspargine, aspartic acid, serine, tyrosine, and trytophane and minor free amino acids were arginine, valine, glycine, lisoluecine, leucine and histidine. Free amino acids contents decreased as heating temperature increased. Vitamin C contents also decreased from 21.3 mg% to 17.3 mg% as heating temperature increased. Naringin, hesperidine and neohesperidin also slightly decreased from 304 mg% to 297.0 mg% as heating temperature increased. In the fresh and heated juices, a total of 50 volatiles were separated, of which 31 were identified. Limonene dominated in volatiles, followed by ${\gamma}-terpinene,\;{\alpha}-phellandrene$, myrcene and ${\alpha}-pinene$. ${\alpha}-Thujene$ presented in the fresh jucie but did not present in the heated juice above $50^{\circ}C$. However, ${\alpha}-Terpinolene$, terpinene-1-ol, ${\beta}-terpineol$, $cis-{\beta}-terpineol$, ${\alpha}-muurolene$, bicyclo(3.2.0)hept-6-ene, and mentha-1.4.8-triene did not presented in the fresh jucie but newly formed in the juice heated at $90^{\circ}C$.

  • PDF

Identification of volatile flavor compounds in Jeju citrus fruits (제주감귤류의 휘발성 향기성분의 확인)

  • Hong, Young Shin;Kim, Kyong Su
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.977-988
    • /
    • 2016
  • The volatile flavor compounds in five Jeju citrus fruit varieties (Cheonhyehyang, Hallabong, Jinjihyang, Hwanggeum hyang and Redhyang) were extracted by simultaneous distillation-extraction (SDE) using solvent mixture of n-pentane and diethyl ether (1:1, v/v) and analyzed by using gas chromatography-mass spectrometry (GC-MS). The number of aroma compounds were identified with : 104 (4,939.77 mg/kg) in Cheonhyehyang, 98 (3,286.38 mg/kg) in Hallabong, 105 (3,317.56 mg/kg) in Jinjihyang, 102 (4,293.39 mg/kg) in Hwanggeumhyang, and 108 (4,049.94 mg/kg) in Redhyang. The detected main volatile compounds were; limonene, sabinene, ${\beta}$-myrcene, ${\alpha}$-pinene, ${\beta}$-pinene, linalool, 4-terpineol, ${\alpha}$-terpineol, (E)-${\beta}$-ocimene and ${\gamma}$-terpinene. Among the identified volatiles compounds, ethyl-benzene, nonanol, 1-p-menthen-9-al, (E)-isocarveol, methyl salicylate, ${\alpha}$-terpinen-7-al, perilla alcohol, and ethyl-dodecanoate were detected in Cheonhyehyang. only Furthermore, ${\beta}$-chamigrene and ${\alpha}$-selinene were in Hallabong only; 3-hydroxybutanal, (E)-2-nonenal, isoborneol, octyl acetate, (E)-2-undecenal, ${\beta}$-ylangene and guaia-6,9-diene in Jinjihyang. ${\rho}$-Cymenene, ${\beta}$-thujone, selina-4,11-diene and (E,E)-2,6-farnesol in Hwanggeumhyang only; and ${\rho}$-cymen-8-ol, bornyl acetate, carvacrol, bicycloelemene, ${\alpha}$-cubebene and 7-epi-${\alpha}$-selinene in Redhyang only. This study confirmed the differences in composition and content of volatile aroma components in five varieties of Jeju citrus fruits.

Biogenic Volatile Organic Compounds (BVOC) Emissions from Fruit Samples Based on Sorbent Tube Sampling and Thermal Desorption (ST-TD) Analysis (흡착튜브 - 열탈착 정량분석 기법에 기반한 과일시료로부터 자연적 휘발성유기화합물의 배출특성 연구)

  • Ahn, Jeong-Hyeon;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.757-772
    • /
    • 2013
  • In this study, a combination of sorbent tube (ST)-thermal desorption (TD)-gas chromatography (GC)-mass spectrometry (MS) was used for quantitative analysis of liquid phase standards of 10 BVOC ((1) (+)-${\alpha}$-pinene, (2) (+)-${\beta}$-pinene, (3) ${\alpha}$-phellandrene, (4) (+)-3-carene, (5) ${\alpha}$-terpinene, (6) p-cymene, (7) (R)-(+)-limonene, (8) ${\gamma}$- terpinene, (9) myrcene, and (10) camphene). The results of BVOC calibration yielded comparatively stable pattern with response factor (RF) of 23,560~50,363 and coefficient of determination ($R^2$) of 0.9911~0.9973. The method detection limit (MDL) of BVOC was estimated at 0.03~0.06 ng with the reproducibility of 1.30~5.13% (in terms of relative standard error (RSE)). Emissions of BVOC were measured from four types of fruit samples ((1) tangerine (TO), (2) tangerine peel (TX), (3) strawberry (SO), and (4) sepals of strawberry (SX)). The sum of BVOC flux (${\sum}flux$ (BVOC) in ng/hr/g) for each sample was seen on the descending order of (1) TX=291,614, (2) TO=2,190, (3) SO=1,414, and (4) SX=2,093. If the results are compared between the individual components, the highest flux was seen from (R)-(+)-limonene (265,395 ng/hr/g) from TX sample.

Efficient Extraction Methods and Analysis of Essential Oil from Softwood leaves (침엽수 잎으로부터 효율적인 정유 추출법 탐색 및 정유성분 분석)

  • 양재경;강병국;김태홍;홍성철;서원택;최명석
    • KSBB Journal
    • /
    • v.17 no.4
    • /
    • pp.357-364
    • /
    • 2002
  • For the effecient extraction methods of essential oil, pretreatment of leaves, ratios of water and leaves, extraction time, and collection season from the Chamaecyparis obtusa and Chamaecyparis pisifera leaves were studied. The chemical composition of essential oil was analyzed by GC-MS. The yield of essential oil from ground leaves was higher than that of chopped leaves. The yield of essential oil was not affected much by mixing ratios of water and leaves. The yield of essential oil reached maximum after 5 hours. The content of essential oil of C. obtusa leaves collected during winter was 4.5%, whereas the content of essential oil of C. pisifera collected during fall was 5.3%. The composition of essential oils extracted form C. obrusa and C. pisifera was different. The major constituents in the essential oil of C. obtusa were monoterpene as limonene, terpinene-4-ol, ${\gamma}$-selinene, and a-cedrene, and those of C. pisifera was monoterpens as ${\alpha}$-pinene, myrcene, limonene, bornyl acetate, ${\beta}$- caryophyllene, longifolene, and ${\beta}$-cedrene.

Analysis of the Aroma Constituents of Korean mandarin (Citrus reticula) and Orange Juices by Capillary GC and GC/MS (한국산 감귤쥬스의 향기성분)

  • Lee, Hyun-Yu;Hawer, Woo-Deck;Shin, Dong-Hwa;Chung, Dong-Hyo
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.346-354
    • /
    • 1987
  • The voflatile fraction from Korean mandarin (Citrus reticula) and valencia orange essence oil were analyzed by capillary gas chromatography and the separated components were identified from their retention time and mass pectrum. The essence oil were extracted with methylene chloride after steam distillation. The major volatile constituents of mandarin and sweet orange was limonene which accounted for 68% of total volatiles in mandarin and 87% in sweet orange. The 31 components identified from mandarin include 11 hydrocarbones, 1 ester, 10 alcohols, 4 aldehydes, 5 miscellaneous. The following 37 components were identified in sweet orange; 12 hydrocarbones, 1 ester, 11 alcohols, 8 aldehydes, 5 misecellaneous. Mandarin contained more octanal, ${\alpha}-terpinene$, terpineol, styrene, dcitronellol, citronellal, citral and farnesol while orange included more sweet orange, myrcene, ${\beta}-pinene$, linallol, decanol, ${\beta}-copaene$, elemene, ${\beta}-cadinene$, valencene.

  • PDF

Composition of Essential Oils from the Leaves and the Fruits of Chamaecyparis obtusa and Chamaecyparis pisifera (편백과 화백의 잎과 열매에서 분리한 정유성분의 조성)

  • Hong, Chul-Un;Kim, Cheol-Sang;Kim, Nam-Gyun;Kim, Young-Hoi
    • Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.116-121
    • /
    • 2001
  • The compositions of essential oils isolated from the leaves and fruits of Chamaecyparis obtusa (Sieb. et Zucc). Endl. and Chamaecyparis pisifera (Sieb. et Zucc.) Endl. were analyzed through GC and GC-MS. The oil yields were 0.83% (as fresh weight) and 1.36% in the leaves and the fruits of C. obtusa, and were 0.92% and 1.28% in those of C. pisifera, respectively. More than 90 components were identified, including high contents of monoterpenoids and sesquiterpenoids. Contents of monoteipenoids in the leaf and fruit oils of C. pisifera were higher than in those of C. obutsa. The major constituents in the leaf oil of C. obtusa were sabinene (11.81% as determined through GC peak area), limonene (7.73%), bornyl acetate (6.92%), $borneol+{\alpha}-teirineol$ (15.67%), and elemol (12.82%), and those in the fruit oil were myrcene (8.12%), ${\gamma}-terpinene$(5.91%), p-cymene(7.62%), $borneol+{\alpha}-terpineol$(6.53%) and ${\beta}-caryophyllene$ (23.74%). The major constituents in the leaf oil of C. pisifera were ${\alpha}-pinene$(32.34%), ${\delta}-3-carene$(25.28%), myrcene(11.72%), and bornyl acetate (8.77%), and those in the fruit oil were ${\alpha}-pinene$ (29.38%), ${\delta}-3-carene$(30.27%), myrcene(15.05%), and limonene(8.10%).

  • PDF