• 제목/요약/키워드: $\alpha$,$\beta$-Unsaturated aldehyde

검색결과 14건 처리시간 0.016초

Selective Reduction of Carbonyl Compounds with Diisopinocampheylhaloboranes

  • 차진순;김은주;권오운;김종미
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권1호
    • /
    • pp.50-55
    • /
    • 1996
  • Reaction of carbonyl compounds with diisopinocampheylhaloboranes (Ipc2BX,X=Cl, Br, I) was investigated in detail in order to establish their usefulness as selective reducing agents. The reagents reduced aldehydes and ketones to the corresponding alcohols. The reactivities are in the order of Ipc2BCl Ipc2BBr>Ipc2BI.The reagents also reduced ${\alpha}{\beta}-unsaturated$, aldehydes and ketones to the corresponding allylic alcohols without any detectable 1,4-reduction. Especially, the chloro derivative nicely achieved the selective reduction of aldehyde or ketone groups in the presence of many other functional groups. The most remarkable result of this investigation is that aldehydes and ketones can be selectively reduced in the presence of acid chlorides.

Reaction of Dipyrrolidinoaluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Oh Oun Kwon;Jong Mi Kim;Jae Cheol Lee
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권8호
    • /
    • pp.644-649
    • /
    • 1994
  • The approximate rates and stoichiometry of reaction of excess dipyrrolinoaluminum hydride (DPAH) with selected organic compounds containing representative functional groups under standardized conditions (tetrahydrofuran, 0, reagent : compound=4 : 1) were examined in order to define the characteristics of the reagent for selective reductions. The reducing ability of DPAH was also compared with that of bis(diethylamino)aluminum hydride (BEAH). The reagent appears to be stronger than BEAH, but weaker than the parent reagent in reducing strength. DPAH shows a unique reducing characteristics. Thus, the reagent reduces aldehydes, ketones, esters, acid chlorides, epoxides, and nitriles readily. In addition to that, ${\alpha},\;{\beta}$-unsaturated aldehyde is reduced to the saturated alcohol. Quinone are reduced cleanly to the corresponding 1,4-reduction products. The examination for possibility of achieving a partial reduction to aldehydes was also performed. Both primary and tertiary aromatic carboxamides are converted to aldehydes with a limiting amount of DPAH. Finally, disulfides and sulfoxides are readily reduced to thiols and sulfides, respectively.

Upregulation of Heme Oxygenase-1 as an Adaptive Mechanism against Acrolein in RAW 264.7 Macrophages

  • Lee, Nam-Ju;Lee, Seung-Eun;Park, Cheung-Seog;Ahn, Hyun-Jong;Ahn, Kyu-Jeung;Park, Yong-Seek
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.230-236
    • /
    • 2009
  • Acrolein, a known toxin in cigarette smoke, is the most abundant electrophilic $\alpha$, $\beta$-unsaturated aldehyde to which humans are exposed in a variety of environmental pollutants, and is also product of lipid peroxidation. Increased unsaturated aldehyde levels and reduced antioxidant status plays a major role in the pathogenesis of various diseases such as diabetes, Alzheimer's and atherosclerosis. The findings reported here show that low concentrations of acrolein induce heme oxygenase-1 (HO-1) expression in RAW 264.7 macrophages. HO-1 induction by acrolein and signal pathways was measured using reverse transcription-polymerase chain reaction, Western blot and immunofluorescence staining analyses. Inhibition of extracellular signal-regulated kinase activity significantly attenuated the induction of HO-1 protein by acrolein, while suppression of Jun N-terminal kinase and p38 activity did not affect induction of HO-1 expression. Moreover, rottlerin, an inhibitor of protein kinase $\delta$, suppressed the upregulation of HO-1 protein production, possibly involving the interaction of NF-E2-related factor 2 (Nrf2), which has a key role as a HO-1 transcription factor. Acrolein elevated the nuclear translocation of Nrf2 in nuclear extraction. The results suggest that RAW 264.7 may protect against acrolein-mediated cellular damage via the upregulation of HO-1, which is an adaptive response to oxidative stress.

Acrolein with an α,β-unsaturated Carbonyl Group Inhibits LPS-induced Homodimerization of Toll-like Receptor 4

  • Lee, Jeon-Soo;Lee, Joo Young;Lee, Mi Young;Hwang, Daniel H.;Youn, Hyung Sun
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.253-257
    • /
    • 2008
  • Acrolein is a highly electrophilic ${\alpha},{\beta}$-unsaturated aldehyde present in a number of environmental sources, especially cigarette smoke. It reacts strongly with the thiol groups of cysteine residues by Michael addition and has been reported to inhibit nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) activation by lipopolysaccharide (LPS). The mechanism by which it inhibits $NF-{\kappa}B$ is not clear. Toll-like receptors (TLRs) play a key role in sensing microbial components and inducing innate immune responses, and LPS-induced dimerization of TLR4 is required for activation of downstream signaling pathways. Thus, dimerization of TLR4 may be one of the first events involved in activating TLR4-mediated signaling pathways. Stimulation of TLR4 by LPS activates both myeloid differential factor 88 (MyD88)- and TIR domain-containing adapter inducing $IFN{\beta}$ (TRIF)-dependent signaling pathways leading to activation of $NF-{\kappa}B$ and IFN-regulatory factor 3 (IRF3). Acrolein inhibited $NF-{\kappa}B$ and IRF3 activation by LPS, but it did not inhibit $NF-{\kappa}B$ or IRF3 activation by MyD88, inhibitor ${\kappa}B$ kinase $(IKK){\beta}$, TRIF, or TNF-receptor-associated factor family member-associated $NF-{\kappa}B$ activator (TANK)-binding kinase 1 (TBK1). Acrolein inhibited LPS-induced dimerization of TLR4, which resulted in the down-regulation of $NF-{\kappa}B$ and IRF3 activation. These results suggest that activation of TLRs and subsequent immune/inflammatory responses induced by endogenous molecules or chronic infection can be modulated by certain chemicals with a structural motif that enables Michael addition.