• 제목/요약/키워드: $\Ca^{2+}$-ATPase

검색결과 220건 처리시간 0.023초

Resveratrol promotes mitochondrial energy metabolism in exercise-induced fatigued rats

  • Xujia Lou;Yulong Hu;Rong Ruan;Qiguan Jin
    • Nutrition Research and Practice
    • /
    • 제17권4호
    • /
    • pp.660-669
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: To investigate the effect and regulatory mechanism of resveratrol supplementation on the mitochondrial energy metabolism of rats with exercise-induced fatigue. MATERIALS/METHODS: Forty-eight Sprague-Dawley male rats were divided randomly into a blank control group (C), resveratrol group (R), exercise group (E), and exercise and resveratrol group (ER), with 12 rats in each group. Group ER and group E performed 6-wk swimming training with 5% wt-bearing, 60 min each time, 6 days a wk. Group ER was given resveratrol 50 mg/kg by gavage one hour after exercise; group R was only given resveratrol 50 mg/kg by gavage; group C and group E were fed normally. The same volume of solvent was given by gavage every day. RESULTS: Resveratrol supplementation could reduce the plasma blood urea nitrogen content, creatine kinase activity, and malondialdehyde content in the skeletal muscle, increase the total superoxide dismutase activity in the skeletal muscle, and improve the fatigue state. Resveratrol supplementation could improve the activities of Ca2+-Mg2+-ATPase, Na+-K+-ATPase, succinate dehydrogenase, and citrate synthase in the skeletal muscle. Furthermore, resveratrol supplementation could up-regulate the sirtuin 1 (SIRT1)-proliferator-activated receptor gamma coactivator-1α (PGC-1α)-nuclear respiratory factor 1 pathway. CONCLUSIONS: Resveratrol supplementation could promote mitochondrial biosynthesis via the SIRT1/PGC-1α pathway, increase the activity of the mitochondrial energy metabolism-related enzymes, improve the antioxidant capacity of the body, and promote recovery from exercise-induced fatigue.

생쥐 소장 카할세포의 pacemaker potential에서 미르타자핀 효능에 관한 연구 (Mirtazapine Regulates Pacemaker Potentials of Interstitial Cells of Cajal in Murine Small Intestine)

  • 김병주
    • 생명과학회지
    • /
    • 제31권7호
    • /
    • pp.662-670
    • /
    • 2021
  • 카할세포는 위장관 근육의 pacemaker 세포이다. 이번 연구는 생쥐 소장에서 얻은 카할세포를 배양하여 노르아드레날린성 및 세로토닌성 항우울제인 미르타자핀의 효과를 조사했다. 전기생리학적인 방법을 이용하여 카할세포의 pacemaker potential의 변화를 측정하였다. 미르타자핀은 농도 의존적 방식으로 카할세포 탈분극을 일으켰다. Y25130 (5-HT3 수용체 길항제), RS39604 (5-HT4 수용체 길항제) 또는 SB269970 (5-HT7 수용체 길항제)은 미르타자핀에 의한 카할세포 탈분극에 영향을 미치지 않았다. 또한, 무스카린성 M2 수용체 길항제인 메톡 트라민은 미르타자핀에 의한 카할세포의 탈분극에 영향을 미치지 않은 반면, 무스카린성 M3 수용체 길항제인 4-DAMP는 카할세포의 탈분극을 억제하였다. GDP-β-S를 피펫을 통해 카할세포내로 넣었을 때, 미르타자핀에 카할세포 탈분극이 억제되었다. 외부에 칼슘이 없는 용액 또는 소포체의 Ca2+-ATPase 억제제인 thapsigargin이 있는 경우 미르타자핀에 의한 카할세포 탈분극이 나타났다. 또한, protein kinase C (PKC) 억제제인 칼포스틴 C 또는 chelerythrine은 미르타자핀에 의한 탈분극을 억제했습니다. 이러한 결과는 미르 타자핀이 카할세포에서 G 단백질 및 PKC 경로에 의한 무스카린성 M3 수용체 활성화를 통해 탈분극을 조절 함을 알 수 있다. 따라서 미르타자핀이 카할세포를 통해 위장관 운동성을 조절할 수 있음을 시사한다.

Effects of Fluoxetine on ATP-induced Calcium Signaling in PC12 Cells

  • Lee, Yeo-Min;Kim, Hee-Jung;Hong, Sun-Hwa;Kim, Myung-Jun;Min, Do-Sik;Rhie, Duck-Joo;Kim, Myung-Suk;Jo, Yang-Hyeok;Hahn, Sang-June;Yoon, Shin-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권1호
    • /
    • pp.57-63
    • /
    • 2004
  • Fluoxetine, a widely used anti-depressant compound, has several additional effects, including blockade of voltage-gated ion channels. We examined whether fluoxetine affects ATP-induced calcium signaling in PC12 cells by using fura-2-based digital calcium imaging and assay for $[^3H]-inositol$ phosphates (IPs). Treatment with ATP $(100\;{\mu}M)$ for 2 min induced $[Ca^{2+}]_i$ increases. The ATP-induced $[Ca^{2+}]_i$ increases were significantly decreased by removal of extracellular $Ca^{2+}$ and treatment with the inhibitor of endoplasmic reticulum $Ca^{2+}$ ATPase thapsigargin $(1\;{\mu}M)$. Treatment with fluoxetine for 5 min blocked the ATP-induced $[Ca^{2+}]_i$ increase concentration-dependently. Treatment with fluoxetine $(30\;{\mu}M)$ for 5 min blocked the ATP-induced $[Ca^{2+}]_i$ increase following removal of extracellular $Ca^{2+}$ and depletion of intracellular $Ca^{2+}$ stores. While treatment with the L-type $Ca^{2+}$ channel antagonist nimodipine for 10 min inhibited the ATP-induced $[Ca^{2+}]_i$ increases significantly, treatment with fluoxetine alone blocked the ATP-induced responses. Treatment with fluoxetine also inhibited the 50 mM $K^+-induced$ $[Ca^{2+}]_i$ increases completely. However, treatment with fluoxetine did not inhibit the ATP-induced $[^3H]-IPs$ formation. Collectively, we conclude that fluoxetine inhibits ATP-indueed $[Ca^{2+}]_i$ increases in PC12 cells by inhibiting both an influx of extracellular $Ca^{2+}$ and a release of $Ca^{2+}$ from intracellular stores without affecting IPs formation.

Influence of Cilnidipine on Catecholamine Release in the Perfused Rat Adrenal Medulla

  • Woo, Seong-Chang;Baek, Young-Joo;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권5호
    • /
    • pp.265-272
    • /
    • 2004
  • The present study was attempted to investigate the effect of cilnidipine (FRC-8635), which is a newly synthesised novel dihydropyridine (DHP) type of organic $Ca^{2+}$ channel blockers, on secretion of catecholamines (CA) evoked by acetylcholine (ACh), high $K^+$, DMPP and McN-A-343 from the isolated perfused rat adrenal gland. Cilnidipine $(1{\sim}10{\mu}M)$ perfused into an adrenal vein for 60 min produced relatively dose- and time-dependent inhibition in CA secretory responses evoked by ACh $(5.32{\times}10^{-3}M),\;DMPP\;(10^{-4}M\;for\;2\;min)$ and McN-A-343 $(10^{-4}M\;for\;2\;min)$. However, lower dose of cilnidipine did not affect CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M)$, higher dose of it reduced greatly CA secretion of high $K^{+}$. Cilnidipine itself did fail to affect basal catecholamine output. In the presence of cilnidipine $(10{\mu}M)$, the CA secretory responses evoked by Bay-K-8644 $(10{\mu}M)$, an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid $(10{\mu}M)$, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase were also inhibited. Moreover, ${\omega}-conotoxin\;GVIA\;(1{\mu}M)$, a selective blocker of the N-type $Ca^{2+}$ channels, given into the adrenal gland for 60 min, also inhibited time-dependently CA secretory responses evoked by Ach, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid. Taken together, these results demostrate that cilnidipine inhibits CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors from the isolated perfused rat adrenal gland without affecting the basal release. However, at lower dose, cilnidipine did not affect CA release by membrane depolarization while at larger dose inhibited that. It seems likely that this inhibitory effect of cilnidipine is exerted by blocking both L- and N-type voltage-dependent $Ca^{2+}$ channels (VDCCs) on the rat adrenomedullary chromaffin cells, which is relevant to inhibition of both the $Ca^{2+}$ influx into the adrenal chromaffin cells and intracellular $Ca^{2+}$ release from the cytoplasmic store. It is thought that N-type VDCCs may play an important role in regulation of CA release from the rat adrenal medulla.

Deficiency of Anoctamin 5/TMEM16E causes nuclear positioning defect and impairs Ca2+ signaling of differentiated C2C12 myotubes

  • Phuong, Tam Thi Thanh;An, Jieun;Park, Sun Hwa;Kim, Ami;Choi, Hyun Bin;Kang, Tong Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권6호
    • /
    • pp.539-547
    • /
    • 2019
  • Anoctamin 5 (ANO5)/TMEM16E belongs to a member of the ANO/TMEM16 family member of anion channels. However, it is a matter of debate whether ANO5 functions as a genuine plasma membrane chloride channel. It has been recognized that mutations in the ANO5 gene cause many skeletal muscle diseases such as limb girdle muscular dystrophy type 2L (LGMD2L) and Miyoshi muscular dystrophy type 3 (MMD3) in human. However, the molecular mechanisms of the skeletal myopathies caused by ANO5 defects are poorly understood. To understand the role of ANO5 in skeletal muscle development and function, we silenced the ANO5 gene in C2C12 myoblasts and evaluated whether it impairs myogenesis and myotube function. ANO5 knockdown (ANO5-KD) by shRNA resulted in clustered or aggregated nuclei at the body of myotubes without affecting differentiation or myotube formation. Nuclear positioning defect of ANO5-KD myotubes was accompanied with reduced expression of Kif5b protein, a kinesin-related motor protein that controls nuclear transport during myogenesis. ANO5-KD impaired depolarization-induced $[Ca2^{+}]_i$ transient and reduced sarcoplasmic reticulum (SR) $Ca^{2+}$ storage. ANO5-KD resulted in reduced protein expression of the dihydropyridine receptor (DHPR) and SR $Ca^{2+}-ATPase$ subtype 1. In addition, ANO5-KD compromised co-localization between DHPR and ryanodine receptor subtype 1. It is concluded that ANO5-KD causes nuclear positioning defect by reduction of Kif5b expression, and compromises $Ca^{2+}$ signaling by downregulating the expression of DHPR and SERCA proteins.

감압 알칼리 수세하여 제조한 고등어 Surimi의 품질 특성 (Quality Characteristics of Mackerel Surimi Prepared by Alkaline Washing under Reduced Pressure)

  • 박형선;박상우;양승택
    • 한국식품과학회지
    • /
    • 제30권5호
    • /
    • pp.1120-1127
    • /
    • 1998
  • 고등어 surimi를 효율적으로 생산하기 위한 연구의 일환으로 감압수세장치를 설계 제작하고 이 장치를 이용하여 각각 상압과, 560 및 660 mmHg의 감압 하에서 각각 1, 3, 5 및 7회 알칼리 수세하고 압력 및 수세횟수에 따른 고등어 surimi의 품질 특성을 검토하였다. 설계 제작한 감압수세장치는 연속수세가 가능하였으며 양질의 surimi를 효율적으로 제조할 수 있었다. 전체의 수세조건을 통하여 surimi의 수분함량은 $72.0{\sim}72.9%$, 조지방 $4.8{\sim}5.7%$ (수세하지 않은 것, 7.0%), pH $6.9{\sim}7.0$ (수세하지 않은 것, 6.0), VBN $6.9{\sim}7.0\;mg/100\;g$ 및 가압드립 $6.7{\sim}8.3%$이었으며, 단백질 추출성은 560 mmHg, 5회 수세 시 염용성, 수용성 및 기질 단백질추출성이 각각 3,694, 6,036 및 1,424 mg/100 g으로써 각각 가장 높았다. $Mg^{2+}-$$Ca^{2+}-ATPase$ 활성은 560 mmHg, 5회 수세 시 각각 0.25 및 $0.17\;{\mu}mol\;Pi/min/mg$ actomyosin으로써 가장 높았다. Setting gel의 TGase 활성은 560 mmHg, 5회 수세 시 3.932 nmol/mg이었으며 gel 강도는 setting gel 및 cooked gel에서 각각 420 g cm (상압, 320 g cm) 및 485 g cm (상압, 412 g cm)로써 각각 가장 높았다. 전반적으로 보아 고등어 surimi 제조를 위한 가장 적합한 수세조건은 760 mmHg, 660 mmHg 및 560 mmHg 압력 중 560 mmHg의 감압 하에서 5회 반복 수세하는 것이었다.

  • PDF

Effects of NaOCl on Neuronal Excitability and Intracellular Calcium Concentration in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae In;Park, A-Reum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제38권1호
    • /
    • pp.5-12
    • /
    • 2013
  • Recent studies indicate that reactive oxygen species (ROS) can act as modulators of neuronal activity, and are critically involved in persistent pain primarily through spinal mechanisms. In this study, we investigated the effects of NaOCl, a ROS donor, on neuronal excitability and the intracellular calcium concentration ($[Ca^{2+}]_i$) in spinal substantia gelatinosa (SG) neurons. In current clamp conditions, the application of NaOCl caused a membrane depolarization, which was inhibited by pretreatment with phenyl-N-tert-buthylnitrone (PBN), a ROS scavenger. The NaOCl-induced depolarization was not blocked however by pretreatment with dithiothreitol, a sulfhydryl-reducing agent. Confocal scanning laser microscopy was used to confirm whether NaOCl increases the intracellular ROS level. ROS-induced fluorescence intensity was found to be increased during perfusion of NaOCl after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF$-DA). NaOCl-induced depolarization was not blocked by pretreatment with external $Ca^{2+}$ free solution or by the addition of nifedifine. However, when slices were pretreated with the $Ca^{2+}$ ATPase inhibitor thapsigargin, NaOCl failed to induce membrane depolarization. In a calcium imaging technique using the $Ca^{2+}$-sensitive fluorescence dye fura-2, the $[Ca^{2+}]_i$ was found to be increased by NaOCl. These results indicate that NaOCl activates the excitability of SG neurons via the modulation of the intracellular calcium concentration, and suggest that ROS induces nociception through a central sensitization.

$Na^+$$K^+$에 의한 심장근 Mitochondria에서의 $Ca^{++}$ 유리작용 (The Calcium Release from Cardiac Mitochondria by Sodium and Potassium)

  • 김명석
    • 대한약리학회지
    • /
    • 제14권1_2호
    • /
    • pp.1-11
    • /
    • 1978
  • 가토 심실근에서 추출한 mitochondria에서 $Na^+$$K^+$이온에 의한 $Ca^{++}$ 유리작용을 관찰하였다. 반응액에 첨가한 1-3mM의 소량 $Na^+$은 mitochondria막에 미리 결합되어있던 $Ca^{++}$을 현저히 유리시켰으며, $K^+$은 단독으로는 $Ca^{++}$ 유리를 유도하지 않았으나 $Na^+$에 의한 $Ca^{++}$ 유리에 대하여는 $Na^+/K^+$비에 따라 그것이 클수록 $Ca^{++}$ 유리를 증가시켰다. 간 및 신장 mitochondria에서도 $Na^+$에 의하 $Ca^{++}$ 유리현상을 보였으나 심근mitochondria에 비하여 $Na^+$에 대한 감수성이 훨씬 미약하여 약 $1/10{\sim}1/5$에 지나지 않았다. 이와같은 mitochondria의 $Ca^{++}$ 유리현상은 비교적 $Na^+$에 특이한 작용이었으며 다른 일가양이온중에서는 $Li^+$에 의해서만 어느 정도 보였다. 부전심근 mitochondria에서의 $Na^+$에 의한 $Ca^{++}$유리는 정상심근 mitochondria에서와 같았으며 이때 digitalis 강심배당체가 직접적으로는 별 영향을 미치지 않았다. 이상에서 심근의 경우 mitochondria는 세포내 $Ca^{++}$을 조절할 수 있는 기구로서 심근수축의 E-C coupling과정에서 세포막의 전기적 흥분현상과 결부하여 $Ca^{++}$을 유리할 수 있을 것으로 추정하였으며, 한편 digitalis배당체의 강심작용기전에 있어서는 digitalis 배당체에 의한 세포막의 $Na^+$, $K^+$-ATPase 억제결과 초래될 수 있는 세포내의 $Na^+$ 증가 및(또는) $K^+$감소가 간접적으로 mitochondria에서부터 $Ca^{++}$ 유리를 증가하여 E-C coupling 과정을 촉진할 수 있을 것을 사료하였다.

  • PDF

R-(-)-TNPA, a Dopaminergic $D_2$ Receptor Agonist, Inhibits Catecholamine Release from the Rat Adrenal Medulla

  • Hong, Soon-Pyo;Seo, Hong-Joo;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권5호
    • /
    • pp.273-282
    • /
    • 2006
  • The aim of the present study was to investigate the effects of R-(-)-2,10,11-trihydroxy-N-propylnoraporphine [R-(-)-TNPA], a selective agonist of dopaminergic $D_2$ receptor and S(-)-raclopride, a selective antagonist of dopaminergic $D_2$ receptor, on the secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused model of the rat adrenal gland, and also to establish its mechanism of action. R-(-)-TNPA $(10{\sim}100\;{\mu}M)$ perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition in CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP $(100\;{\mu}M)$ and McN-A-343 $(100\;{\mu}M)$. R-(-)-TNPA itself did also fail to affect basal CA output. Also, in adrenal glands loaded with R-(-)-TNPA $(30\;{\mu}M)$, the CA secretory responses evoked by Bay-K-8644 $(10\;{\mu}M)$, an activator of L-type $Ca^2+$ channels and cyclopiazonic acid $(10\;{\mu}M)$, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$ were also inhibited. However, S(-)-raclopride $(1{\sim}10\;{\mu}M)$, given into an adrenal vein for 60 min, enhanced the CA secretory responses evoked by ACh, high $K^+$, DMPP and McN-A-343 only for the first period (4 min), although it alone has weak effect on CA secretion. Moreover, S(-)-raclopride $(3.0\;{\mu}M)$ in to an adrenal vein for 60 min also augmented the CA release evoked by BAY-K-8644 and cyclopiazonic acid only for the first period (4 min). However, after simultaneous perfusion of R-(-)-TNP A $(30\;{\mu}M)$ and S(-)-raclopride $(3.0\;{\mu}M)$, the inhibitory responses of R(-)-TNPA $(30\;{\mu}M)$ on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644, and cyclopiazonic acid were significantly reduced. Taken together, these experimental results suggest that R-(-)-TNPA greatly inhibits the CA secretion from the perfused rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) and membrane depolarization, but S(-)-raclopride rather enhances the CA release by them. It seems that this inhibitory of R-(-)-TNPA may be mediated by stimulation of inhibitory dopaminergic $D_2$ receptors located on the rat adrenomedullary chromaffin cells, while the facilitatory effect of S(-)-raclopride is due to the blockade of dopaminergic $D_2$ receptors, which are relevant to extra- and intracellular calcium mobilization. Therefore, it is thought that dopaminergic $D_2$ receptors may be involved in regulation of CA release in the rat adrenal medulla.

Inhibitory Effects of Ginsenoside-Rb2 on Nicotinic Stimulation-Evoked Catecholamine Secretion

  • Lim, Hyo-Jeong;Lee, Hyun-Young;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권5호
    • /
    • pp.431-439
    • /
    • 2014
  • The aim of the present study was to investigate whether ginsenoside-Rb2 (Rb2) can affect the secretion of catecholamines (CA) in the perfused model of the rat adrenal medulla. Rb2 ($3{\sim}30{\mu}M$), perfused into an adrenal vein for 90 min, inhibited ACh (5.32 mM)-evoked CA secretory response in a dose- and time-dependent fashion. Rb2 ($10{\mu}M$) also time-dependently inhibited the CA secretion evoked by DMPP ($100{\mu}M$, a selective neuronal nicotinic receptor agonist) and high $K^+$ (56 mM, a direct membrane depolarizer). Rb2 itself did not affect basal CA secretion (data not shown). Also, in the presence of Rb2 ($50{\mu}g/mL$), the secretory responses of CA evoked by veratridine (a selective $Na^+$ channel activator ($50{\mu}M$), Bay-K-8644 (an L-type dihydropyridine $Ca^{2+}$ channel activator, $10{\mu}M$), and cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, $10{\mu}M$) were significantly reduced, respectively. Interestingly, in the simultaneous presence of Rb2 ($10{\mu}M$) and L-NAME (an inhibitor of NO synthase, $30{\mu}M$), the inhibitory responses of Rb2 on ACh-evoked CA secretory response was considerably recovered to the extent of the corresponding control secretion compared with the inhibitory effect of Rb2-treatment alone. Practically, the level of NO released from adrenal medulla after the treatment of Rb2 ($10{\mu}M$) was greatly elevated compared to the corresponding basal released level. Collectively, these results demonstrate that Rb2 inhibits the CA secretory responses evoked by nicotinic stimulation as well as by direct membrane-depolarization from the isolated perfused rat adrenal medulla. It seems that this inhibitory effect of Rb2 is mediated by inhibiting both the influx of $Ca^{2+}$ and $Na^+$ into the adrenomedullary chromaffin cells and also by suppressing the release of $Ca^{2+}$ from the cytoplasmic calcium store, at least partly through the increased NO production due to the activation of nitric oxide synthase, which is relevant to neuronal nicotinic receptor blockade.