• Title/Summary/Keyword: $\Ca^{2+}$-ATPase

Search Result 220, Processing Time 0.032 seconds

Resveratrol promotes mitochondrial energy metabolism in exercise-induced fatigued rats

  • Xujia Lou;Yulong Hu;Rong Ruan;Qiguan Jin
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.660-669
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: To investigate the effect and regulatory mechanism of resveratrol supplementation on the mitochondrial energy metabolism of rats with exercise-induced fatigue. MATERIALS/METHODS: Forty-eight Sprague-Dawley male rats were divided randomly into a blank control group (C), resveratrol group (R), exercise group (E), and exercise and resveratrol group (ER), with 12 rats in each group. Group ER and group E performed 6-wk swimming training with 5% wt-bearing, 60 min each time, 6 days a wk. Group ER was given resveratrol 50 mg/kg by gavage one hour after exercise; group R was only given resveratrol 50 mg/kg by gavage; group C and group E were fed normally. The same volume of solvent was given by gavage every day. RESULTS: Resveratrol supplementation could reduce the plasma blood urea nitrogen content, creatine kinase activity, and malondialdehyde content in the skeletal muscle, increase the total superoxide dismutase activity in the skeletal muscle, and improve the fatigue state. Resveratrol supplementation could improve the activities of Ca2+-Mg2+-ATPase, Na+-K+-ATPase, succinate dehydrogenase, and citrate synthase in the skeletal muscle. Furthermore, resveratrol supplementation could up-regulate the sirtuin 1 (SIRT1)-proliferator-activated receptor gamma coactivator-1α (PGC-1α)-nuclear respiratory factor 1 pathway. CONCLUSIONS: Resveratrol supplementation could promote mitochondrial biosynthesis via the SIRT1/PGC-1α pathway, increase the activity of the mitochondrial energy metabolism-related enzymes, improve the antioxidant capacity of the body, and promote recovery from exercise-induced fatigue.

Mirtazapine Regulates Pacemaker Potentials of Interstitial Cells of Cajal in Murine Small Intestine (생쥐 소장 카할세포의 pacemaker potential에서 미르타자핀 효능에 관한 연구)

  • Kim, Byung Joo
    • Journal of Life Science
    • /
    • v.31 no.7
    • /
    • pp.662-670
    • /
    • 2021
  • Interstitial cells of Cajal (ICCs) are the pacemaking cells in the gastrointestinal (GI) muscles that generate the rhythmic oscillation in membrane potentials known as slow waves. In the present study, we investigated the effects of mirtazapine, a noradrenergic and serotonergic antidepressant, on pacemaking potential in cultured ICCs from the murine small intestine. The whole-cell patch-clamp configuration was used to record pacemaker potential in cultured ICCs. Mirtazapine induced pacemaker potential depolarizations in a concentration-dependent manner in the current clamp mode. Y25130 (a 5-HT3 receptor antagonist), RS39604 (a 5-HT4 receptor antagonist), and SB269970 (a 5-HT7 receptor antagonist) had no effects on mirtazapine-induced pacemaker potential depolarizations. Also, methoctramine, a muscarinic M2 receptor antagonist, had no effect on mirtazapine-induced pacemaker potential depolarizations, whereas 4-diphenylacetoxy-N-methyl-piperidine methiodide (4-DAMP), a muscarinic M3 receptor antagonist, inhibited the depolarizations. When guanosine 5'-[β-thio] diphosphate (GDP-β-S; 1 mM) was in the pipette solution, mirtazapine-induced pacemaker potential depolarization was blocked. When an external Ca2+ free solution or thapsigargin, a Ca2+-ATPase inhibitor of the endoplasmic reticulum, was applied, the generation of pacemaker potentials disappeared, and under these conditions, mirtazapine induced pacemaker potential depolarizations. In addition, protein kinase C (PKC) inhibitor, calphostin C, and chelerythrine inhibited mirtazapine-induced pacemaker potential depolarizations. These results suggest that mirtazapine regulates pacemaker potentials through muscarinic M3 receptor activation via a G protein-dependent and an external or internal Ca2+-independent PKC pathway in the ICCs. Therefore, mirtazapine can control GI motility through ICCs.

Effects of Fluoxetine on ATP-induced Calcium Signaling in PC12 Cells

  • Lee, Yeo-Min;Kim, Hee-Jung;Hong, Sun-Hwa;Kim, Myung-Jun;Min, Do-Sik;Rhie, Duck-Joo;Kim, Myung-Suk;Jo, Yang-Hyeok;Hahn, Sang-June;Yoon, Shin-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.1
    • /
    • pp.57-63
    • /
    • 2004
  • Fluoxetine, a widely used anti-depressant compound, has several additional effects, including blockade of voltage-gated ion channels. We examined whether fluoxetine affects ATP-induced calcium signaling in PC12 cells by using fura-2-based digital calcium imaging and assay for $[^3H]-inositol$ phosphates (IPs). Treatment with ATP $(100\;{\mu}M)$ for 2 min induced $[Ca^{2+}]_i$ increases. The ATP-induced $[Ca^{2+}]_i$ increases were significantly decreased by removal of extracellular $Ca^{2+}$ and treatment with the inhibitor of endoplasmic reticulum $Ca^{2+}$ ATPase thapsigargin $(1\;{\mu}M)$. Treatment with fluoxetine for 5 min blocked the ATP-induced $[Ca^{2+}]_i$ increase concentration-dependently. Treatment with fluoxetine $(30\;{\mu}M)$ for 5 min blocked the ATP-induced $[Ca^{2+}]_i$ increase following removal of extracellular $Ca^{2+}$ and depletion of intracellular $Ca^{2+}$ stores. While treatment with the L-type $Ca^{2+}$ channel antagonist nimodipine for 10 min inhibited the ATP-induced $[Ca^{2+}]_i$ increases significantly, treatment with fluoxetine alone blocked the ATP-induced responses. Treatment with fluoxetine also inhibited the 50 mM $K^+-induced$ $[Ca^{2+}]_i$ increases completely. However, treatment with fluoxetine did not inhibit the ATP-induced $[^3H]-IPs$ formation. Collectively, we conclude that fluoxetine inhibits ATP-indueed $[Ca^{2+}]_i$ increases in PC12 cells by inhibiting both an influx of extracellular $Ca^{2+}$ and a release of $Ca^{2+}$ from intracellular stores without affecting IPs formation.

Influence of Cilnidipine on Catecholamine Release in the Perfused Rat Adrenal Medulla

  • Woo, Seong-Chang;Baek, Young-Joo;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.5
    • /
    • pp.265-272
    • /
    • 2004
  • The present study was attempted to investigate the effect of cilnidipine (FRC-8635), which is a newly synthesised novel dihydropyridine (DHP) type of organic $Ca^{2+}$ channel blockers, on secretion of catecholamines (CA) evoked by acetylcholine (ACh), high $K^+$, DMPP and McN-A-343 from the isolated perfused rat adrenal gland. Cilnidipine $(1{\sim}10{\mu}M)$ perfused into an adrenal vein for 60 min produced relatively dose- and time-dependent inhibition in CA secretory responses evoked by ACh $(5.32{\times}10^{-3}M),\;DMPP\;(10^{-4}M\;for\;2\;min)$ and McN-A-343 $(10^{-4}M\;for\;2\;min)$. However, lower dose of cilnidipine did not affect CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M)$, higher dose of it reduced greatly CA secretion of high $K^{+}$. Cilnidipine itself did fail to affect basal catecholamine output. In the presence of cilnidipine $(10{\mu}M)$, the CA secretory responses evoked by Bay-K-8644 $(10{\mu}M)$, an activator of L-type $Ca^{2+}$ channels and cyclopiazonic acid $(10{\mu}M)$, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase were also inhibited. Moreover, ${\omega}-conotoxin\;GVIA\;(1{\mu}M)$, a selective blocker of the N-type $Ca^{2+}$ channels, given into the adrenal gland for 60 min, also inhibited time-dependently CA secretory responses evoked by Ach, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid. Taken together, these results demostrate that cilnidipine inhibits CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors from the isolated perfused rat adrenal gland without affecting the basal release. However, at lower dose, cilnidipine did not affect CA release by membrane depolarization while at larger dose inhibited that. It seems likely that this inhibitory effect of cilnidipine is exerted by blocking both L- and N-type voltage-dependent $Ca^{2+}$ channels (VDCCs) on the rat adrenomedullary chromaffin cells, which is relevant to inhibition of both the $Ca^{2+}$ influx into the adrenal chromaffin cells and intracellular $Ca^{2+}$ release from the cytoplasmic store. It is thought that N-type VDCCs may play an important role in regulation of CA release from the rat adrenal medulla.

Deficiency of Anoctamin 5/TMEM16E causes nuclear positioning defect and impairs Ca2+ signaling of differentiated C2C12 myotubes

  • Phuong, Tam Thi Thanh;An, Jieun;Park, Sun Hwa;Kim, Ami;Choi, Hyun Bin;Kang, Tong Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.539-547
    • /
    • 2019
  • Anoctamin 5 (ANO5)/TMEM16E belongs to a member of the ANO/TMEM16 family member of anion channels. However, it is a matter of debate whether ANO5 functions as a genuine plasma membrane chloride channel. It has been recognized that mutations in the ANO5 gene cause many skeletal muscle diseases such as limb girdle muscular dystrophy type 2L (LGMD2L) and Miyoshi muscular dystrophy type 3 (MMD3) in human. However, the molecular mechanisms of the skeletal myopathies caused by ANO5 defects are poorly understood. To understand the role of ANO5 in skeletal muscle development and function, we silenced the ANO5 gene in C2C12 myoblasts and evaluated whether it impairs myogenesis and myotube function. ANO5 knockdown (ANO5-KD) by shRNA resulted in clustered or aggregated nuclei at the body of myotubes without affecting differentiation or myotube formation. Nuclear positioning defect of ANO5-KD myotubes was accompanied with reduced expression of Kif5b protein, a kinesin-related motor protein that controls nuclear transport during myogenesis. ANO5-KD impaired depolarization-induced $[Ca2^{+}]_i$ transient and reduced sarcoplasmic reticulum (SR) $Ca^{2+}$ storage. ANO5-KD resulted in reduced protein expression of the dihydropyridine receptor (DHPR) and SR $Ca^{2+}-ATPase$ subtype 1. In addition, ANO5-KD compromised co-localization between DHPR and ryanodine receptor subtype 1. It is concluded that ANO5-KD causes nuclear positioning defect by reduction of Kif5b expression, and compromises $Ca^{2+}$ signaling by downregulating the expression of DHPR and SERCA proteins.

Quality Characteristics of Mackerel Surimi Prepared by Alkaline Washing under Reduced Pressure (감압 알칼리 수세하여 제조한 고등어 Surimi의 품질 특성)

  • Park, Hyung-Sun;Park, Sang-Woo;Yang, Seung-Taek
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1120-1127
    • /
    • 1998
  • An attempt was made in this study to investigate the optimum condition of washing for preparation of mackerel surimi by alkaline washing of 1, 3, 5, and 7 times under atmospheric (760), 660, and 560 mmHg pressure. The qualities of surimis were examined by analyzing the factors such as water content, crude lipid, pH, volatile basic nitrogen (VBN), expressible drip, protein extractability, $Mg^{2+}-$, $Ca^{2+}-$ and EDTA-ATPase activity, transglutaminase (TGase) activity, gel strength and color. The contents of moisture, crude lipid, pH and VBN in surimis prepared by alkaline washing under atmospheric, and reduced pressure went up to $72.0{\sim}72.9%$, $4.8{\sim}5.7%$, $6.9{\sim}7.0$ and $6.7{\sim}7.0\;mg/100\;g$, respectively. Protein extractability, ATPase activity and TGase activity were highest in surimis prepared by alkaline washing under 560 mmHg. Gel strengths of surimi setting gel and cooked gel from five times washing under 560 mmHg were 420 g cm (atmospheric, 330 g cm) and 485 g cm (atmospheric, 412 g cm), respectively. For the preparation of mackerel surimi, optimum washing condition was five times washing under 560 mmHg.

  • PDF

Effects of NaOCl on Neuronal Excitability and Intracellular Calcium Concentration in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae In;Park, A-Reum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.38 no.1
    • /
    • pp.5-12
    • /
    • 2013
  • Recent studies indicate that reactive oxygen species (ROS) can act as modulators of neuronal activity, and are critically involved in persistent pain primarily through spinal mechanisms. In this study, we investigated the effects of NaOCl, a ROS donor, on neuronal excitability and the intracellular calcium concentration ($[Ca^{2+}]_i$) in spinal substantia gelatinosa (SG) neurons. In current clamp conditions, the application of NaOCl caused a membrane depolarization, which was inhibited by pretreatment with phenyl-N-tert-buthylnitrone (PBN), a ROS scavenger. The NaOCl-induced depolarization was not blocked however by pretreatment with dithiothreitol, a sulfhydryl-reducing agent. Confocal scanning laser microscopy was used to confirm whether NaOCl increases the intracellular ROS level. ROS-induced fluorescence intensity was found to be increased during perfusion of NaOCl after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF$-DA). NaOCl-induced depolarization was not blocked by pretreatment with external $Ca^{2+}$ free solution or by the addition of nifedifine. However, when slices were pretreated with the $Ca^{2+}$ ATPase inhibitor thapsigargin, NaOCl failed to induce membrane depolarization. In a calcium imaging technique using the $Ca^{2+}$-sensitive fluorescence dye fura-2, the $[Ca^{2+}]_i$ was found to be increased by NaOCl. These results indicate that NaOCl activates the excitability of SG neurons via the modulation of the intracellular calcium concentration, and suggest that ROS induces nociception through a central sensitization.

The Calcium Release from Cardiac Mitochondria by Sodium and Potassium ($Na^+$$K^+$에 의한 심장근 Mitochondria에서의 $Ca^{++}$ 유리작용)

  • Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.14 no.1_2
    • /
    • pp.1-11
    • /
    • 1978
  • The $Na^+$-and $K^+$-induced $Ca^{++}$ release was measured isotopically by Milipore filter technique in mitochondria isolated from rabbit ventricles. The release of $Ca^{++}$ from mitochondria could be induced by 1-3 mM of $Na^+$ added in incubating medium under the presence of 0.5mM EGTA to prevent the released $Ca^{++}$ from rebinding with mitochondrial membrane. The amount of $Ca^{++}$ released was increased by increasing the concentration of $Na^+$ added. 100mM $K^+$, in itself, did not induce the $Ca^{++}$ release from cardiac mitochondria, the $Na^+$-induced $Ca^{++}$ release, however, was potentiated by the presence of $K^+$. The potentiation of $Na^+$-induced $Ca^{++}$ release by $K^+$ was proportional to the $Na^+/K^+$ ratio presented in the incubating medium. Among the monovalent cations other than $Na^+$, the release of $Ca^{++}$ from cardiac mitochondria was shared only by $Li^+$. The $Na^+$-induced $Ca^{++}$ release could be also observed in the mitochondria isolated from liver and kidney. However, the $Na^+$ sensitivity was somewhat lower in liver and kidney mitochondria than in heart mitochondria. The release of $Ca^{++}$ induced by $Na^+$ in the mitochondria isolated from the experimentally produced failured heart was not different from that in the normal heart mitochondria, and was not directly modified by $10^{-6}{\sim}10^{-5}$ M of Ouabain. From the experiments, it was suggested that the $Ca^{++}$ released from mitochondria by $Na^+$ could be used in excitation-contraction coupling process to initiate the contraction of the cardiac myofibrils. Futhermore, it appeared that the phenomenon of $Ca^{++}$ release from cardiac mitochondria by $Na^+$ and $K^+$ might be related to the inotropic effect of digitalis glycoside which could bring about the increase of $Na^+$ or the reduction of $K^+$ intracellulary through the inhibition of $Na^+$, $K^+$-ATPase.

  • PDF

R-(-)-TNPA, a Dopaminergic $D_2$ Receptor Agonist, Inhibits Catecholamine Release from the Rat Adrenal Medulla

  • Hong, Soon-Pyo;Seo, Hong-Joo;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.273-282
    • /
    • 2006
  • The aim of the present study was to investigate the effects of R-(-)-2,10,11-trihydroxy-N-propylnoraporphine [R-(-)-TNPA], a selective agonist of dopaminergic $D_2$ receptor and S(-)-raclopride, a selective antagonist of dopaminergic $D_2$ receptor, on the secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused model of the rat adrenal gland, and also to establish its mechanism of action. R-(-)-TNPA $(10{\sim}100\;{\mu}M)$ perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition in CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP $(100\;{\mu}M)$ and McN-A-343 $(100\;{\mu}M)$. R-(-)-TNPA itself did also fail to affect basal CA output. Also, in adrenal glands loaded with R-(-)-TNPA $(30\;{\mu}M)$, the CA secretory responses evoked by Bay-K-8644 $(10\;{\mu}M)$, an activator of L-type $Ca^2+$ channels and cyclopiazonic acid $(10\;{\mu}M)$, an inhibitor of cytoplasmic $Ca^{2+}-ATPase$ were also inhibited. However, S(-)-raclopride $(1{\sim}10\;{\mu}M)$, given into an adrenal vein for 60 min, enhanced the CA secretory responses evoked by ACh, high $K^+$, DMPP and McN-A-343 only for the first period (4 min), although it alone has weak effect on CA secretion. Moreover, S(-)-raclopride $(3.0\;{\mu}M)$ in to an adrenal vein for 60 min also augmented the CA release evoked by BAY-K-8644 and cyclopiazonic acid only for the first period (4 min). However, after simultaneous perfusion of R-(-)-TNP A $(30\;{\mu}M)$ and S(-)-raclopride $(3.0\;{\mu}M)$, the inhibitory responses of R(-)-TNPA $(30\;{\mu}M)$ on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644, and cyclopiazonic acid were significantly reduced. Taken together, these experimental results suggest that R-(-)-TNPA greatly inhibits the CA secretion from the perfused rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) and membrane depolarization, but S(-)-raclopride rather enhances the CA release by them. It seems that this inhibitory of R-(-)-TNPA may be mediated by stimulation of inhibitory dopaminergic $D_2$ receptors located on the rat adrenomedullary chromaffin cells, while the facilitatory effect of S(-)-raclopride is due to the blockade of dopaminergic $D_2$ receptors, which are relevant to extra- and intracellular calcium mobilization. Therefore, it is thought that dopaminergic $D_2$ receptors may be involved in regulation of CA release in the rat adrenal medulla.

Inhibitory Effects of Ginsenoside-Rb2 on Nicotinic Stimulation-Evoked Catecholamine Secretion

  • Lim, Hyo-Jeong;Lee, Hyun-Young;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.431-439
    • /
    • 2014
  • The aim of the present study was to investigate whether ginsenoside-Rb2 (Rb2) can affect the secretion of catecholamines (CA) in the perfused model of the rat adrenal medulla. Rb2 ($3{\sim}30{\mu}M$), perfused into an adrenal vein for 90 min, inhibited ACh (5.32 mM)-evoked CA secretory response in a dose- and time-dependent fashion. Rb2 ($10{\mu}M$) also time-dependently inhibited the CA secretion evoked by DMPP ($100{\mu}M$, a selective neuronal nicotinic receptor agonist) and high $K^+$ (56 mM, a direct membrane depolarizer). Rb2 itself did not affect basal CA secretion (data not shown). Also, in the presence of Rb2 ($50{\mu}g/mL$), the secretory responses of CA evoked by veratridine (a selective $Na^+$ channel activator ($50{\mu}M$), Bay-K-8644 (an L-type dihydropyridine $Ca^{2+}$ channel activator, $10{\mu}M$), and cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, $10{\mu}M$) were significantly reduced, respectively. Interestingly, in the simultaneous presence of Rb2 ($10{\mu}M$) and L-NAME (an inhibitor of NO synthase, $30{\mu}M$), the inhibitory responses of Rb2 on ACh-evoked CA secretory response was considerably recovered to the extent of the corresponding control secretion compared with the inhibitory effect of Rb2-treatment alone. Practically, the level of NO released from adrenal medulla after the treatment of Rb2 ($10{\mu}M$) was greatly elevated compared to the corresponding basal released level. Collectively, these results demonstrate that Rb2 inhibits the CA secretory responses evoked by nicotinic stimulation as well as by direct membrane-depolarization from the isolated perfused rat adrenal medulla. It seems that this inhibitory effect of Rb2 is mediated by inhibiting both the influx of $Ca^{2+}$ and $Na^+$ into the adrenomedullary chromaffin cells and also by suppressing the release of $Ca^{2+}$ from the cytoplasmic calcium store, at least partly through the increased NO production due to the activation of nitric oxide synthase, which is relevant to neuronal nicotinic receptor blockade.