• Title/Summary/Keyword: $[^3H]DPCPX$ binding

Search Result 8, Processing Time 0.013 seconds

Characteristics of $A_1\;and\;A_2$ Adenosine Receptors upon the Acetylcholine Release in the Rat Hippocampus

  • Kim, Do-Kyung;Lee, Young-Soo;Choi, Bong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.31-39
    • /
    • 1998
  • As it has been reported that the depolarization induced acetylcholine (ACh) release is modulated by activation of presynaptic $A_1$ adenosine heteroreceptor and various lines of evidence suggest the $A_2$ adenosine receptor is present in the hippocampus. The present study was undertaken to delineate the role of adenosine receptors on the hippocampal ACh release. Slices from the rat hippocampus were equilibrated with $[^3H]choline$ and then the release amount of the labelled product, $[^3H]ACh$, which was evoked by electrical stimulation (rectangular pulses, 3 Hz, 2 ms, 24 mA, $5\;V/cm^{-1}$, 2 min), was measured, and the influence of various adenosine receptor-related agents on the evoked tritium outflow was investigated. And also, the drug-receptor binding assay was performed in order to confirm the presence of $A_1$ and $A_2$ adenosine receptors in the rat hippocampus. N-ethylcarboxamidoadenosine (NECA), a potent adenosine receptor agonist with nearly equal affinity at $A_1$ and $A_2$ adenosine receptors, in concentrations ranging from $1{\sim}30\;{\mu}M$, decreased the electrically-evoked $[^3H]ACh$ release in a concentration-dependent manner without affecting the basal rate of release. And the effect of NECA was significantly inhibited by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 2 ${\mu}M$), a selective $A_1$ adenosine receptor antagonist, but was not influenced by 3,7-dimethyl-1-propargylxanthine (DMPX, 5 ${\mu}M$), a specific $A_2$ adenosine receptor antagonist. $N^6-cyclopentyladenosine$ (CPA), a selective $A_1$ adenosine receptor agonist, in doses ranging from 0.1 to 10 ${\mu}M$, reduced evoked $[^3H]ACh$ release in a dose-dependent manner without the change of the basal release. And the effect of CPA was significantly inhibited by 2 ${\mu}M$ DPCPX treatment. 2-P-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680C), a potent $A_2$ adenosine receptor agonist, in concentrations ranging from 0.1 to 10 ${\mu}M$, did not alter the evoked ACh release. In the drug-receptor binding assay, the binding of $[^3H]2-chloro-N^6-cyclopentyladenosine$ ($[^3H]$CCPA) to the $A_1$ adenosine receptor of rat hippocampal membranes was inhibited by CPA ($K_i$ = 1.22 nM), NECA ($K_i=10.17 nM$) and DPCPX ($K_i=161.86 nM$), but not by CGS-21680C ($K_i=2,380 nM$) and DMPX ($K_i=22,367 nM$). However, the specific binding of $[^3H]CGS-21680C$ to the $A_2$ adenosine receptor was not observed. These results suggest that the $A_1$ adenosine heteroreceptor play an important role in evoked ACh release, but the presence of $A_2$ adenosine receptor is not confirmed in this study.

  • PDF

Desensitization of $A_1$ Adenosine Receptors in Rat Cerebral Cortex (흰쥐 대뇌피질에서 $A_1$ 아데노신 수용체의 탈감작)

  • Park, Kyung-Sun;Yang, Wan-Suk;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.151-158
    • /
    • 1996
  • Following the subcutaneous administration of $R(-)N^6-(2-phenylisopropyl)adenosine(600\;nmol/kg/hr)$ to rats for 1 week using t$Alzet^{\circledR}$ mini-osmotic pumps, $A_1$ adenosine receptor functions were determined using $[^3H]DPCPX$ binding, $[^{35}S]GTP_{\gamma}S$ binding, and adenylyl cyclase assays. $A_1$ adenosine receptor binding and the inhibition of adenylyl cyclase activity by PIA was not altered in cerebrocortical membranes prepared from PIA-treated rats. However, there was a significant decrease in the $A_1$ adenosine receptor-mediated stimulation of $[^{35}S]GTP_{\gamma}S$ binding to cerebrocortical membranes prepared from PIA-treated rats(22.0% decrease in basal activity; 19.7% decrease in maximal activity). These results suggest that the desensitization of $A_1$ adenosine receptors following chronic administration involves agonist-induced uncoupling of the receptors from G proteins rather than alteration of $A_1$ adenosine receptor molecules. It is also suggested that the determination of stimulation of $[^{35}S]GTP_{\gamma}S$ binding to G proteins is a suitable tool in studying the receptor regulation including desensitization

  • PDF

Inverse Agonists at $A_1$ Adenosine Receptors in Rat Cerebral Cortex (흰쥐의 뇌의$A_1$ 아데노신 수용체에 작용하는 역효현제에 관한 연구)

  • Park, Kyung-Sun;Yang, Wan-Suk;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.23-29
    • /
    • 1996
  • According to the traditional receptor model, competitive antagonists share with agonists the ability to bind to a common site on receptors, but they are different from agonist in that they cannot trigger the biological response-i.e., they lack intrinsic efficacy. Recent findings extend the model by indicating that not all antagonists display an intrinsic efficacy of zero but that some display 'inverse agonism'. In the present study we studied the inverse agonism at $A_1$ adenosine receptors in membranes prepared from rat cerebral cortex. Eight commercially available $A_1$ adenosine receptor antagonists (CGS-15943, ADPX, CPT, DPCPX, DPX, N-0840, PACPX and 8-PT) were screened for inverse agonism by measuring the extent of $[^{35}S]guanosine-5'-({\gamma}-thio)$ triphosphate $([^{35}S]GTP_{\gamma}S)$ binding to G proteins. The agonist-induced stimulation of $[^{35}S]GTP_{\gamma}S$ bindings was completely blocked in the presence of $A_1$ adenosine receptor antagonists. Under optimal conditions, two types of antagonists could be distinguished. Seven antagonists including DPCPX decreased the basal $[^{35}S]GTP_{\gamma}S$ binding in the absence of agonist, displaying inverse agonist activity. One (CGS-15943) had no effect on the basal bindings. N-ethylmaleimide treatment reduced the basal bindings as well as agonist-mediated stimulation of $[^{35}S]GTP_{\gamma}S$ bindings, indicating that a substantial amount of this binding reflects an activated state of the C proteins. In good agreement with these findings, 0.1 mM GTP decreased the apparent affinity of the receptors for the agonist PIA, increased that for DPCPX, and had no effect on that for CGS-15943.

  • PDF

Regulation of Adenosine Receptors in Rat Brain following Chronic Carbamazepine Treatment

  • Park, Kyung-Sun;Yang, Wan-Suk;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.13-17
    • /
    • 1997
  • Carbamazepine (CBZ), an anticonvulsant, has beeen reported to displace ligands at adenosine receptors. Several studies have demonstrated that as far as $A_2$adenosine receptors is concerned, CBZ acts as an antagonist. However, the situation with regard to Al receptors is less straightforward. In this study, we describe the effects of one-week CBZ treatment (25 mg/kg/day) on cerebrocortical $A_1$ adenosine receptors. $A_1$ adenosine receptor bindings as determined by using $[^3CH]DPCPX$ was not significantly altered in membranes prepared from CBZ-treated rats. However, there was a significant decrease in the $A_1$ adenosine receptor-mediated stimulation of $[^{35}S]GTP_{\gamma}S$ binding to cerebrocortical membranes prepared from CBZ-treated rats (20.0% decrease in basal activity; 17.8% decrease in maximal activity). The basal and $10^{-4}$ M forskolin-stimulated adenylyl cyclase activities were relatively unaffected by CBZ treatment, but 10 mM NaF-stimulated adenylyl cyclase activity was significantly reduced in CBZ-treated rats. It appears that one-week CBZ treatment caused an uncoupling of adenosine receptors from G proteins without alteration of $A_1$ adenosine receptor molecules, suggesting that CBZ acts as an agonist at $A_1$ adenosine receptors in rat brain.

  • PDF

The Role of Adenosine Receptors on Acetylcholine Release in the Rat Striatum

  • Kim, Do-Kyung;Kim, Hyeon-A;Choi, Bong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • As it has been reported that the depolarization induced acetylcholine (ACh) release is modulated by activation of presynaptic $A_1$ adenosine heteroreceptor and various evidence suggest that indicate the $A_2$ adenosine receptor is present in the striatum, this study was undertaken to delineate the role of adenosine receptors on the striatal ACh release. Slices from the rat striatum were equilibrated with $[^3H]$choline and then the release amount of the labelled product, $[^3H]$ACh, which was evoked by electrical stimulation (rectangular pulses, 3 Hz, 2 ms, 24 mA, $5\;Vcm^{-1}$, 2 min), was measured, and the influence of various agents on the evoked tritium outflow was investigated. And also, quantitative receptor autoradiography and drug-receptor binding assay were performed in order to confirm the presence and characteristics of $A_1$ and $A_2$ adenosine receptors in the rat striatum. Adenosine $(10{sim}100\;{mu}M)$ and $N^6$-cyclopentyladenosine (CPA, $1{sim}100\;{mu}M)$ decreased the $[^3H]$ACh release in a dose-dependent manner without changing the basal rate of release in the rat striatum. The reducing effects of ACh release by adenosine and CPA were abolished by 8-cyclopentyl-1,3-dipropy-Ixanthine (DPCPX, 2 ${mu}M$), a selective $A_1$, adenosine receptor antagonist, treatment. The effect of adenosine was potentiated markedly by 3,7-dimethyl-1-propargylxanthine (DMPX, 10 ${mu}M$), a specific $A_2$ adenosine receptor antagonist. 2-P-(2-carboxyethyl)phenethylamimo-5'-N- ethylcarboxamidoadenosine hydrochloride (CGS-21680C), in concentrations ranging from 0.01 to 10 ${mu}M$, a recently introduced potent $A_2$ adenosine receptor agonist, increased the $[^3H]$ACh release in a dose related fashion without changing the basal rate of release. These effects were completely abolished by DMPX $(10\;{mu}M)$. In autoradiograrhy experiments, $[^3H]$2-chloro-$N^6$-cyclopentyladenosine ($[^3H]$ CCPA) bindings were highly localized in the hippocampus and the cerebral cortex. Additionally, lower levels of binding were found in the striatum. However, $[^3H]$CGS-21680C bindings were highly localized in the striatal region with the greatest density of binding found in the caudate nucleus and putamen. Lower levels of binding were also found in the nucleus accumbens and olfactory tubercle. In drug-receptor binding assay, binding of $[^3H]$ CCPA to $A_1$ adenosine receptors of rat striatal membranes was inhibited by CPA ($K_i$ = 1.6 nM) and N-ethylcarboxamidoadenosine (NECA, $K_i$ = 12.9 nM), but not by CGS-21680C ($K_i$ = 2609.2 nM) and DMPX ($K_i$ = 19,386 nM). In contrast, $[^3H]$CGS-21680C binding to $A_2$ denosine receptors was inhibited by CGS-21680C ($K_i$ = 47.6 nM) and NECA ($K_i$ = 44.9 nM), but not by CPA ($K_i$ = 2099.2 nM) and DPCPX ($K_i$ = 19,207 nM). The results presented here suggest that both types of $A_1$ and $A_2$ adenosine heteroreceptors exist and play an important role in ACh release in the rat striatal cholinergic neurons.

  • PDF

Interaction of Forskolin with the Effect of $N^6-Cyclopentyladenosine$ on $[^3H]-Acetylcholine$ Release in Rat Hippocampus (흰쥐 해마에서 Acetylcholine 유리에 미치는 $N^6-Cyclopentyladenosine$ 및 Forskolin의 영향)

  • Choi, Bong-Kyu;Park, Hie-Man;Kang, Yeon-Wook;Kook, Young-Johng
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.129-136
    • /
    • 1992
  • As it has been reported that the depolarization-induced acetylcholine (ACh) release is modulated by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus and various lines of evidence indicate the involvement of adenylate cyclase system in $A_1-adenosine$ post-receptor mechanism in hippocampus, it was attempted to delineate the role of adenylate cyclase system in the $A_1-receptor-mediated$ control of ACh release in this study. Slices from rat hippocampus were incubated with $[^3H]-choline$ and the release of the labelled products was evoked by electrical stimulation $(3\;Hz,\;5\;Vcm^{-1},\;2\;ms,\;rectangular\;pulses)$, and the influence of various agents on the evoked tritium-outflow was investigated. $N^6-cyclopentyladenosine$ (CPA), a specific $A_1-adenosine$ receptor agonist, in concentrations ranging from 0.1 to $10\;{\mu}M$, decreased the $[^3H]-ACh$ release in a dose-dependent manner without the changes of basal rate of release. 8-cyclopentyl-1,3-dipropylxanthine $(DPCPX,\;1{\sim}10\;{\mu}M)$, a selective $A_1-receptor$ antagonist, increased the $[^3H]-ACh$ release in a dose-related fashion with slight increase of basal tritium-release. And the CPA effects were significantly inhibited by DPCPX $(2\;{\mu}M)$ pretreatment and the dose-response curve produced by CPA was shifted to the right. The responses to N-ethylmaleimide $(NEM,\;10\;&\;30\;{\mu}M)$, a SH-alkylating agent of G-protein, were characterized by increments of the evoked ACh-release and the basal release, and the CPA effect were completely abolished by NEM pretreatment. Forskolin, a specific adenylate cyclase activator, in concentrations ranging from 0.3 to $10\;{\mu}M$, increased the evoked ACh-release in a dose-dependent manner and the CPA effects were inhibited by forskolin. These results indicate that the $A_1-adenosine$ heteroreceptor plays an important role in ACh-release via nucleotide-binding protein Gi in the rat hippocampus and that the adenylate cyclase system might be participated in this process.

  • PDF

Cellular Mechanism of Nicotine-mediated Intracellular Calcium Homeostasis in Primary Culture of Mouse Cerebellar Granule Cells (니코틴의 마우스 소뇌과립세포내 칼슘의 항상성 조절기전)

  • Kim, Won-Ki;Pae, Young-Sook
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.13-21
    • /
    • 1996
  • Intracellular calcium concentration ($[Ca^{2+}]_i$) may play a crucial role in a variety of neuronal functions. Here we report that in primary culture of mouse cerebellar granule cells nicotinic acetylcholine receptors (nAChRs) are expressed in a specific developmental stage and involved in the regulation of intracellular calcium homeostasis. Nicotine-mediated calcium responses were measured using $^{45}Ca^{2+}$ or fluorometrically using the calcium-sensitive fluorescent dye fura-2. Maximal uptake of $^{45}Ca^{2+}$ evoked by nicotine in mouse cerebellar granule cells were revealed $8{\sim}12$ days in culture. In contrast, nicotine did not alter the basal $^{45}Ca^{2+}$ uptake in cultured glial cells. In cerebellar granule cells nicotine-evoked $^{45}Ca^{2+}$ uptake was largely blocked by the NMDA receptor antagonists. Glutamate pyruvate transaminase (GPT). which removes endogenous glutamate, also prevented nicotine effects, implying the indirect involvement of glutamate in nicotine-mediated calcium responses. Fluorometric studies using fura-2 showed two phases of nicotine-evoked $[Ca^{2+}]_i$ rises: the initial rising phase and the later plateau phase. Interestingly, the NMDA receptor antagonists and GPT appeared to inhibit only the later plateau phase of nicotine-evoked $[Ca^{2+}]_i$ rises. The present results imply that nicotine mediated $^{45}Ca^{2+}$ uptake and $[Ca^{2+}]_i$ rises are attributed to the calcium fluxes through both nAchRs and NMDA receptors in a time-dependent manner. Consequently, nAChRs may play an important role in neuronal development by being expressed in a specific developmental stage and regulating the intracellular calcium homeostasis.

  • PDF

Interaction of Forskolin with the Effect of $N^6-cyclopentyladenosine$ on Norepinephrine Release in Rat Hippocampus (흰쥐 해마에서 Norepinephrine 유리에 미치는 $N^6-cyclopentyladenosine$ 및 Forskolin의 영향)

  • Choi Bong-Kyu;Kim Do-Kyung;Son Yong;Yang Ue-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.225-231
    • /
    • 1997
  • As it has been reported that the depolarization-induced norepinephrine (NE) release is modulated by activation of presynaptic $A_1-adenosine$ heteroreceptor and various lines of evidence indicate the involvement of adenylate cyclase system in $A_1-adenosine$ post-receptor mechanism in hippocampus, it was attempted to delineate the role of adenylate cyclase system in the $A_1-receptor-mediated$ control of NE release in this study. Slices from rat hippocampus were equilibrated with $[^3H]-NE$ and the release of the labelled products was evoked by electrical stimulation.(3 Hz, $5Vcm^{-1}$, 2 ms, rectangular pulses). The influence of various agents on the evoked tritium-outflow was investigated. $N^6-Cyclopentyladenosine$ (CPA), a specific $A_1-adenosine$ receptor agonist, in concentrations Tanging from 0.1 to $10{\mu}M$ decreased the $[^3H]-NE$ release in a dose-dependent mauler without any change of basal rate of release. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX, $2{\mu}M$), a selective $A_1-receptor$ antagonist, inhibited the CPA effect. The responses to N-ethylmaleimide $(3&10{\mu}M)$, a SH-alkylating agent of G-protein, were characterized by increments of the evoked NE-release and the CPA effects were completely abolished by NEM pretreatment. Forskolin, a specific adenylate cyclase activator, in concentrations ranging from 0.1 to $30{\mu}M$ increased the evoked and basal rate of NE release in a dose-dependent manner and the CPA effects were inhibited by forskolin pretreatment. Rolipram $(1&10{\mu}M)$, a phosphodiesterase inhibitor, did not affect the evoked NE release but reduced the CPA effect. And 8-bromo-cAMP $(100&300{\mu}M)$, a membrane permeable cAMP analogue inhibited the CPA effect significantly. These results suggest that the $A_1-adenosine$ heteroreceptor plays an important role in NE-release via nucleotide-binding protein $G_i$ in the rat hippocampus and that the adenylate cyclase system might be participated in this process.

  • PDF