• Title/Summary/Keyword: $<_+$-stable

Search Result 22,106, Processing Time 0.05 seconds

A Deconstructive Understanding the Concept of Haewon in Daesoon Truth: From the Perspective of Derrida's Deconstruction Theory (대순진리의 해원(解冤)사상에 대한 해체(解體)론적 이해 -자크 데리다(Jacques Derrida)의 해체론을 중심으로-)

  • Kim, Dae-hyeon
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.39
    • /
    • pp.69-97
    • /
    • 2021
  • 'Déconstruction' is a system of thought that induces the emergent property that characterizes contemporary philosophy. The tradition of ancient Greek philosophy evolved over and over again, giving rise to the Renaissance and Enlightenment. It seemed to have reached its end under the historical perspective of modernity. However, contemporary philosophy wanted to see more possibilities through the deconstruction of modern philosophy. If modern philosophy dreams of a strange cohabitation between God and man with the humanistic completion of Plato's philosophy, modern philosophy rejects even that through deconstruction. Although Plato's classical metaphysics is a stable system centered around the absolute, it is ultimately based on God and religion. Under that system, human autonomy is only the autonomy bestowed by God. Contemporary philosophy is one of the results of efforts that try to begin philosophy from the original human voice through deconstruction. Instead of epistemology dependent on metaphysics, they wanted to establish epistemology from human existence and realize the best good that would set humans free through deconstruction. As such, it is no mistake to say that deconstruction is also an extension of the modern topic of human freedom. Deconstruction and human freedom act as one body in that the two cannot be separated from each other. Oddly enough, Daesoon Thought, which seems to have religious faith and traditional conservatism as main characteristics, has an emergent property that encompasses modern and contemporary times. The period of Korea, when Kang Jeungsan was active and founded Daesoon Thought, has an important meaning for those who have a keen view of history. Such individuals likely think that they have found a valuable treasure. This is because that period was a time when ideological activities were conducted due to an intense desire to discover the meaning of human freedom and envision a new world without copying the ways of the West. Instead they looked to face internal problems and raise people's awareness through subjectivity. In other words, the subtle ideas created by Korea's self-sustaining liberalism often take the form of what is commonly called new religions in modern times. Among these new religions, Daesoon Thought, as a Chamdonghak (true Eastern Learning), aims to spread a particular modern value beyond modern times through the concept of Haewon (the resolution of grievances) that was proclaimed by Jeungsan. The Haewon espoused in Daesoon Thought is in line with the disbandment of modern philosophy in that it contains modernity beyond modern times. First, Haewon means to resolve the fundamental resentment of human existence, which arose from Danju's grievance. Secondly, Haewon in Daesoon Thought encompasses the Haewon of the Three Realms of Heaven, Earth, and Humanity centers on a Haewon-esque style of existence called Injon (Human Nobility). Haewon in Daesoon Thought can be understood in the same context as Derrida's philosophy of Deconstruction. Modern deconstruction attempts to expose the invisible structures and bonds within human society and attempt to destroy them. In a similar way, Haewon endeavors to resolve the conflicts among the Three Realms by releasing the bonds of fundamental oppression that hinder the Three Realms of Heaven, Earth, and Humanity.

Fish Community Characteristics in Hwapocheon Wetland, Korea (화포천 습지의 어류군집 특성)

  • Ko, Myeong-Hun;Choi, Kwang-Seek;Lim, Jeong-Cheol
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.2
    • /
    • pp.165-176
    • /
    • 2022
  • This study surveyed the characteristics of fish communities in Hwapocheon Wetland, Korea, from May to September 2020. The survey collected 735 objects in 21 species belonging to 7 families from 8 survey stations. The dominant and subdominant species were Hemiculter eigenmanni(23.8%) and Micropterus salmoides(10.3%), respectively. The next most abundant species were Zacco platypus(9.5%), Carassius auratus(9.4%), Pseudorasbora parva(9.0%), Squalidus chankaensis tsuchigae(6.7%), Acheilognathus macropterus(5.4%), Lepomis macrochirus(5.2%), Pseudogobio esocinus(4.1%), Opsariichthys uncirostris amurensis(3.7%), and Carassius cuvieri(3.3%). Among the fish species collected, one species, Culter brevicauda, was class II endangered wildlife designated by the Ministry of Environment, and one species,S. c. tsuchigae(4.8%), was endemic to Korea.Additionally, three exotic species (M. salmoides, L. macrochirus, and C. cuvieri) and one landlocked species (Rhinogobius brunneus) were collected. Compared to previous studies, the proportion of fish living in the running water area tended to decrease, the proportion of fish living in the water purification area tended to increase, and ecosystem-disturbing species (M. salmoides and L. macrochirus) tended to increase gradually. Results of fish community analysis showed that the mainstream stations (St. 1, 3, 4, 5, 6, and 8) had low dominance, but high diversity and richness, and other stations (St. 2 and 7) had high dominance but low diversity and richness. The river health (index of biological integrity) evaluated using fish was assessed as bad (6 stations), normal (1 station), and very bad (1 station). The water quality grade was assessed as slightly bad due to the chemical oxygen demand (COD), total organic content (TOC), suspended solid (SS), and total coliforms (TC). The annual water quality showed a gradually increasing trend of biological oxygen demand (BOD), COD, SS, and chlorophyll-a. The stable life of fish and the improvement of river health in Hwapocheon Wetland require water quality improvement and the systematic management of ecosystem-disturbing species (M. salmoidesand L. macrochirus).

Development of flow measurement method using drones in flood season (II) - application of surface velocity doppler radar (드론을 이용한 홍수기 유량측정방법 개발(II) - 전자파표면유속계 적용)

  • Lee, Tae Hee;Kang, Jong Wan;Lee, Ki Sung;Lee, Sin Jae
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.903-913
    • /
    • 2021
  • In the flood season, the measurement of the river discharge has many restrictions due to reasons such as budget, manpower, safety, convenience in measurement and so on. In particular, when heavy rain events occur due to typhoons, etc., it is difficult to measure the amount of flood due to the above problems. In order to improve this problem, in this study, a method was developed that can measure the river discharge in a flood season simply and safely in a short time with minimal manpower by combining the functions of a drone and a surface velocity doppler radar. To overcome the mechanical limitations of drones caused by weather issues such as wind and rainfall derived from the measurement of the river discharge using the conventional drone, we developed a drone with P56 grade dustproof and waterproof performance, stable flight capability at a wind speed of up to 36 km/h, and a payload weight of up to 10 kg. Further, to eliminate vibration which is the most important constraint factor in the measurement with a surface velocity doppler radar, a damper plate was developed as a device that combines a drone and a surface velocity Doppler radar. The velocity meter DSVM (Dron and Surface Veloctity Meter using doppler radar) that combines the flight equipment with the velocity meter was produced. The error of ±3.5% occurred as a result of measuring the river discharge using DSVM at the point of Geumsan-gun (Hwangpunggyo) located at Bonghwang stream (the first tributary stream of the Geum River). In addition, when calculating the mean velocity from the measured surface velocity, the measurement was performed using ADCP simultaneously to improve accuracy, and the mean velocity conversion factor (0.92) was calculated by comparing the mean velocity. In this study, the discharge measured by combining a drone and a surface velocity meter was compared with the discharge measured using ADCP and floats, so that the application and utility of DSVM was confirmed.

Changes in Leader Role Schemas Over The Past 10 Years: Comparisons by Gender (10년간 리더 역할 도식의 변화: 리더와 응답자의 성별을 중심으로)

  • Ryong, Joung-Soon;Choi, Hoon-Seok
    • Korean Journal of Culture and Social Issue
    • /
    • v.26 no.3
    • /
    • pp.121-143
    • /
    • 2020
  • The present study examined the content and changes in leader role schemas associated with 'male' leaders, 'female' leaders, and 'good' leaders over the past 10 years in Korea. In addition, we analyzed how the gender of the respondents affects their perception of male leaders versus female leaders as a good leader. A total of 736 Korean adults residing in the Seoul metropolitan area participated in the survey at two different time points, one in 2007, and the other in 2017. The respondents were presented with a total of 90 behavior items driven from the literature and asked to choose the items that represent male leaders, female leaders, and good leaders, respectively. We found that the chosen behavior items for male leaders versus female leaders matched closely to the typical sex role of males (i.e., being agentic) versus females (i.e., being communal). By contrast, the chosen behavior items for good leaders reflected both the male-typed roles and the female-typed roles. We also found that the role schemas associated with male leaders as well as good leaders have changed over the 10 year period. Those schemas also differed between male versus female respondents. For female leaders, however, the role schemas were found to be stable over the 10 years. We also found that the good leader schemas are more specified and variable than are the male or the female schemas. Additionally, in the 2007 survey male characteristics overlapped with good leader characteristics to a greater degree than did female characteristics. This difference was no longer observed in the 2017 survey. The observed difference in the degree of overlap between male (versus female) characteristics with good leader characteristics was attributable to the perceptions of male respondents. We discuss implications of our findings and directions for future research.

Characterization of Synthesized Carbonate and Sulfate Green Rusts: Formation Mechanisms and Physicochemical Properties (합성된 탄산염 및 황산염 그린 러스트의 형성 메커니즘과 이화학적 특성 규명)

  • Lee, Seon Yong;Choi, Su-Yeon;Chang, Bongsu;Lee, Young Jae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.111-123
    • /
    • 2022
  • Carbonate green rust (CGR) and sulfate green rust (SGR) commonly occur in nature. In this study, CGR and SGR were synthesized through co-precipitation, and their formation mechanisms and physicochemical properties were investigated. X-ray diffraction (XRD) and Rietveld refinement showed both CGR and SGR with layered double hydroxide structure were successfully synthesized without any secondary phases under each synthetic condition. Refined structural parameters (unit cell) for two green rusts were a (=b) = 3.17 Å and c = 22.52 Å for CGR and a (=b) = 5.50 Å and c = 10.97 Å for SGR with the crystallite size 57.8 nm in diameter from (003) reflection and 40.1 nm from (001) reflections, respectively. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) results showed that both CGR and SGR had typical hexagonal plate-like crystal morphologies but their chemical composition is different in the content of C and S. In addition, Fourier transform infrared (FT-IR) spectroscopy analysis revealed that carbonate (CO32-) and sulfate (SO42-) molecules were occupied as interlayer anions of CGR and SGR, respectively. These SEM/EDS and FT-IR results were in good agreement with XRD results. Changes in the solution chemistry (i.e., pH, Eh and residual iron concentrations (Fe(II):Fe(III)) of the mixed solution) were observed as a function of the injection time of hydroxyl ion (OH-) into the iron solution. Three different stages were observed in the formation of both CGR and SGR; precursor, intermediator, and green rust in the formation of both CGR and SGR. This study provides co-precipitation methods for CGR and SGR in a way of the stable synthesis. In addition, our findings for the formation mechanisms of the two green rusts and their physicochemical properties will provide crucial information with researches and industrials in utilizing green rust.

Analysis of Skin Color Pigments from Camera RGB Signal Using Skin Pigment Absorption Spectrum (피부색소 흡수 스펙트럼을 이용한 카메라 RGB 신호의 피부색 성분 분석)

  • Kim, Jeong Yeop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • In this paper, a method to directly calculate the major elements of skin color such as melanin and hemoglobin from the RGB signal of the camera is proposed. The main elements of skin color typically measure spectral reflectance using specific equipment, and reconfigure the values at some wavelengths of the measured light. The values calculated by this method include such things as melanin index and erythema index, and require special equipment such as a spectral reflectance measuring device or a multi-spectral camera. It is difficult to find a direct calculation method for such component elements from a general digital camera, and a method of indirectly calculating the concentration of melanin and hemoglobin using independent component analysis has been proposed. This method targets a region of a certain RGB image, extracts characteristic vectors of melanin and hemoglobin, and calculates the concentration in a manner similar to that of Principal Component Analysis. The disadvantage of this method is that it is difficult to directly calculate the pixel unit because a group of pixels in a certain area is used as an input, and since the extracted feature vector is implemented by an optimization method, it tends to be calculated with a different value each time it is executed. The final calculation is determined in the form of an image representing the components of melanin and hemoglobin by converting it back to the RGB coordinate system without using the feature vector itself. In order to improve the disadvantages of this method, the proposed method is to calculate the component values of melanin and hemoglobin in a feature space rather than an RGB coordinate system using a feature vector, and calculate the spectral reflectance corresponding to the skin color using a general digital camera. Methods and methods of calculating detailed components constituting skin pigments such as melanin, oxidized hemoglobin, deoxidized hemoglobin, and carotenoid using spectral reflectance. The proposed method does not require special equipment such as a spectral reflectance measuring device or a multi-spectral camera, and unlike the existing method, direct calculation of the pixel unit is possible, and the same characteristics can be obtained even in repeated execution. The standard diviation of density for melanin and hemoglobin of proposed method was 15% compared to conventional and therefore gives 6 times stable.

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

Evaluation of Biomass and Feed Value of Forage Wheat in Central Region at the Paddy by Cultivars (중부지역 논 재배 사료용 밀의 품종별 생산성 및 사료가치 평가)

  • Cho, Hyun Min;Shin, Myeong Na;Shim, Kang Bo;Han, Areum;Jeon, Weon Tai
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.2
    • /
    • pp.79-88
    • /
    • 2022
  • This study was conducted to evaluate the productivity of whole crop silage wheat utilizing the paddy fields during a couple of years from 2019 to 2021 in Suwon, Korea. This investigation was used the two maturity types of wheat cultivar 'Cheongwoo' (early) and 'Taeu' (late). The heading date of 2nd year (Oct. 2020 to May. 2021) cultivation was delayed about 11 to 13 days by more than 1st year (Oct. 2019 to May. 2020). The growth characteristics were shown that the plant height was increased in 2nd cultivation, while the number of culms and the panicle part ratio were decreased. Moreover, the nutritive value of 'Cheongwoo' and 'Taeu' were also decreased in 2nd cultivation. These changes have thought to a difference of the precipitation by cultivation years. Because, the precipitation during the period from the end of winter dormancy to the harvesting stage in 2nd (337 mm) cultivation was more about twice than 1st (169.3 mm) cultivation. However, the dry matter yield of 'Cheongwoo' was not shown a statistical difference by cultivation years, while 'Taeu' was shown to decrease tendency. The total dry matter yield regardless of the cultivation years were higher in 'Cheongwoo' than 'Taeu', and especially 'Cheongwoo' was more 3 tons per hectare (15.3 t/ha) than 'Taeu' (12.6 t/ha) at 2nd cultivation (p<0.01). The trend of dry weight in 'Cheongwoo', early mature type, showed a relatively high ratio of dry matter (p<0.05) was considered that due to a high panicle ratio by a fast heading and an adequate weight of panicles by a sufficient maturing. In conclusion, selecting the early maturity cultivars could achieve a higher and more stable total dry matter yield considering the cropping system in the central region. Furthermore, it also has the advantage of being able to double-cropping system with forage rice, which has considered the maximum whole-crop forage production year-round. These results suggest that the 'Cheongwoo' be optimum cultivar to produce the year-round forage on paddy fields in the central region.

Diagnosis of Nitrogen Content in the Leaves of Apple Tree Using Spectral Imagery (분광 영상을 이용한 사과나무 잎의 질소 영양 상태 진단)

  • Jang, Si Hyeong;Cho, Jung Gun;Han, Jeom Hwa;Jeong, Jae Hoon;Lee, Seul Ki;Lee, Dong Yong;Lee, Kwang Sik
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.384-392
    • /
    • 2022
  • The objective of this study was to estimated nitrogen content and chlorophyll using RGB, Hyperspectral sensors to diagnose of nitrogen nutrition in apple tree leaves. Spectral data were acquired through image processing after shooting with high resolution RGB and hyperspectral sensor for two-year-old 'Hongro/M.9' apple. Growth data measured chlorophyll and leaf nitrogen content (LNC) immediately after shooting. The growth model was developed by using regression analysis (simple, multi, partial least squared) with growth data (chlorophyll, LNC) and spectral data (SPAD meter, color vegetation index, wavelength). As a result, chlorophyll and LNC showed a statistically significant difference according to nitrogen fertilizer level regardless of date. Leaf color became pale as the nutrients in the leaf were transferred to the fruit as over time. RGB sensor showed a statistically significant difference at the red wavelength regardless of the date. Also hyperspectral sensor showed a spectral difference depend on nitrogen fertilizer level for non-visible wavelength than visible wavelength at June 10th and July 14th. The estimation model performance of chlorophyll, LNC showed Partial least squared regression using hyperspectral data better than Simple and multiple linear regression using RGB data (Chlorophyll R2: 81%, LNC: 81%). The reason is that hyperspectral sensor has a narrow Full Half at Width Maximum (FWHM) and broad wavelength range (400-1,000 nm), so it is thought that the spectral analysis of crop was possible due to stress cause by nitrogen deficiency. In future study, it is thought that it will contribute to development of high quality and stable fruit production technology by diagnosis model of physiology and pest for all growth stage of tree using hyperspectral imagery.

A Study on Training Dataset Configuration for Deep Learning Based Image Matching of Multi-sensor VHR Satellite Images (다중센서 고해상도 위성영상의 딥러닝 기반 영상매칭을 위한 학습자료 구성에 관한 연구)

  • Kang, Wonbin;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1505-1514
    • /
    • 2022
  • Image matching is a crucial preprocessing step for effective utilization of multi-temporal and multi-sensor very high resolution (VHR) satellite images. Deep learning (DL) method which is attracting widespread interest has proven to be an efficient approach to measure the similarity between image pairs in quick and accurate manner by extracting complex and detailed features from satellite images. However, Image matching of VHR satellite images remains challenging due to limitations of DL models in which the results are depending on the quantity and quality of training dataset, as well as the difficulty of creating training dataset with VHR satellite images. Therefore, this study examines the feasibility of DL-based method in matching pair extraction which is the most time-consuming process during image registration. This paper also aims to analyze factors that affect the accuracy based on the configuration of training dataset, when developing training dataset from existing multi-sensor VHR image database with bias for DL-based image matching. For this purpose, the generated training dataset were composed of correct matching pairs and incorrect matching pairs by assigning true and false labels to image pairs extracted using a grid-based Scale Invariant Feature Transform (SIFT) algorithm for a total of 12 multi-temporal and multi-sensor VHR images. The Siamese convolutional neural network (SCNN), proposed for matching pair extraction on constructed training dataset, proceeds with model learning and measures similarities by passing two images in parallel to the two identical convolutional neural network structures. The results from this study confirm that data acquired from VHR satellite image database can be used as DL training dataset and indicate the potential to improve efficiency of the matching process by appropriate configuration of multi-sensor images. DL-based image matching techniques using multi-sensor VHR satellite images are expected to replace existing manual-based feature extraction methods based on its stable performance, thus further develop into an integrated DL-based image registration framework.