Browse > Article

Involvement of calcineurin and PKB/Akt in development of hereditary hypertension  

Hong, Yonggeun (Department of Internal Medicine-Cardiology, University of Texas Southwestern Medical Center at Dallas)
Cho, Jae-hyun (Department of Psychiatry, University of Alabama at Birmingham)
Kim, Joo-heon (College of Veterinary Medicine and Institute of Animal Medicine, Gyeongsang National University)
Publication Information
Korean Journal of Veterinary Research / v.44, no.1, 2004 , pp. 7-13 More about this Journal
Abstract
Severe hypertension (>180 mmHg) develops in spontaneously hypertensive rats (SHR) after 12 wk-old; however, it is not clear whether what kinds of molecular mechanism leads to altered cardiac performance following developmental stages in SHR. Also, although the effect of calcineurin (Cn) to promote cardiomyocyte hypertrophy in vivo and in vitro is established, its overall necessity as a hypertrophic mediator is currently an area of ongoing debate. Thus, we have examined i) body weight and blood pressure, ii) differences of expression and distribution of signaling molecules such as Cn, protein kinase B/Akt (PKB/Akt), and extracellular signal-regulated kinase (ERK) between SHR and their age-matched control Wistar-Kyoto (WKY) rats following developmental stages. In 16 wk-old SHR compared with WKY, 2-dimentional echocardiography showed cardiac enlargement and hypertrophy of left ventricle, significantly. Taken together, we suggest that Cn is associated with hereditary cardiac hypertrophy, the process being related to the molecular signaling mechanisms involving PKB/Akt and ERK.
Keywords
spontaneously hypertensive rat; hypertension; hypertrophy; calcineurin; PKB/Akt; ERK;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Akhter, S. A., Milano, C. A., Shotwell, K. F., Cho, M. C., Rockman, H. A., Lefkowitz, R. J. and Koch, W. J. Transgenic mice with cardiac overexpression ofalpha1B-adrenergic receptors. In vivo alpha1-adrenergic receptor-mediated regulation of beta-adrenergic signaling. J. Biol. Chem. 1997, 272, 21253-21259
2 Corda, S., Mebazaa, A., Gandolfini, M. P., Fitting, C., Marotte, F., Peynet, J., Charlemagne, D., Cavaillon, J. M., Payen, D., Rappaport, L. and Samuel, J. L. Trophic effect of human pericardial fluid on adult cardiac myocytes. Differential ole of fibroblast growth factor-2 and factors related to ventricular hypertrophy. Circ. Res. 1997, 81, 679-687
3 Hill, J. A., Karimi, M., Kutschke, W., Davisson, R. L., Zimmerman, K., Wang, Z., erber, R. E. and Weiss, R. M. Cardiac hypertrophy is not a requiredcompensatory response to short-term pressure overload. Circulation. 2000, 101, 2863-2869
4 Marian, A. J. and Roberts, R. Recent advances in the molecular genetics of hypertrophic cardiomyopathy. Circulation. 1995, 92, 1336-1347
5 Ostrom, R. S., Gregorian, C., Drenan, R. M., Xiang, Y., Regan, J. W. and Insel, P. A. Receptor number and caveolar co-localization determine receptor couplingefficiency to adenylyl cyclase. J. Biol. Chem. 2001, 276, 42063-42069.
6 De Windt, L. J., Lim, H. W., Bueno, O. F., Liang,Q., Delling, U., Braz, J. C., Glascock, B. J., Kimball, T. F., del Monte, F., Hajjar, R. J. and Molkentin, J. D. Targeted inhibition of calcineurin attenuates cardiachypertrophy in vivo. Proc. Natl. Acad. Sci. USA. 2001, 98, 3322-3327
7 Pfeffer, M. A., Frohlich, E. D., Pfeffer, J. M., Yunice, A. and Nordquist, J. A. Pathophysiological implications of the increased cardiac output of young spontaneously hypertensive rats. Circ. Res. 1974, 34/35, I235-I242
8 Ruwhof, C. and Laarse, A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc. Res. 2000, 47, 23-37
9 Kenneth, R. and Chien, M. D. Stress pathway and heart failure. Cell. 1999, 98, 555-558
10 Brilla, C. G., Janicki, J. S. and Weber, K. T. Impaired diastolic function and coronary reserve in genetic hypertension: role of interstitial fibrosis and medialthickening of intramyocardial coronary arteries. Circ Res. 1991, 69, 107-115
11 Boluyt, M. O., Bing, O. H. L. and Lakatta, E. G. The ageing spontaneously hypertensive rat as a model of the transition from stable compensated hypertrophy to heart failure. Eur. Heart J. 1995, 16(suppl N), 19-30
12 Woessner JF Jr. The determination of hydroxyproline in tissue and protein samples containing small proportions of this amino acid. Arch. Biochem.Biophys. 1961, 93, 440-447
13 Hong, Y. Role of caveolin as inter/intracellular shuttle molecule on the pathogenesis of diabetes and hypertension: Characterization of the multifunctional role of caveolin isoforms. Ph.D thesis of GSNU library. 2001
14 Nishimura, H., Kubo, S., Nishioka, A., Imamura, K., Kawamura, K. and Hasegawa, M. Left ventricular diastolic function of spontaneously hypertensive rats and its relationship to structural components of the left ventricle. Clin. Sci. (Lond.). 1985, 69, 571-579
15 Clerk, A. and Sugden, P. H. Activation of protein kinase cascades in the heart by hypertrophic G proteincoupled receptor agonists. Am. J. Cardiol. 1999, 17, 64-69
16 Li, S., Galbiati, F., Volonte, D., Sargiacomo, M., Engelman, J. A., Das, K., Scherer, P. E. and Lisanti, M. P. Mutational analysis of caveolin-induced vesicleformation. Expression of caveolin-1 recruits caveolin-2 to caveolae membranes. FEBS Lett. 1998, 434, 127-134
17 Oh, P. and Schnitzer, J. E. Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol. Biol. Cell. 2001, 12, 685-698
18 Delaughter, M. C., Taffet, G. E., Fiorotto, M. L., Entman, M. L. and Schwartz, R. J. Local insulinlike growth factor I expression induces physiologic,then pathologic, cardiac hypertrophy in transgenic mice. FASEB J. 1999, 13, 1923-1929
19 Bing, O. H., Brooks, W. W., Robinson, K. G.,Slawsky, M. T., Hayes, J. A., Litwin, S. E., Sen, S. and Conrad, C. H. The spontaneously hypertensive ratas a model of the transition from compensated left ventricular hypertrophy to failure. J. Mol. Cell Cardiol. 1995, 27, 383-396.
20 Molkentin, J. D. and Dorn II G. W. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 2001, 63, 391-426
21 MacLellan, W. R. and Schneider, M. D. Genetic dissection of cardiac growth control pathways. Annu. Rev. Physiol. 2000, 62, 289-319
22 Kobayashi, T., Hamada, M., Okayama, H., Shigematsu, Y., Sumimoto, T. and Hiwada, K. Contractile properties of left ventricular myocytes isolated from spontaneously hypertensive rats: effect of angiotensin II. J. Hypertens. 1995, 13, 1803-1807