1 |
ACI 318 Committee (2014), Building Code Requirements for Structural Concrete: (ACI 318-14), and Commentary (ACI 318R-14), Concrete Inst., Farmington Hills, MI, USA.
|
2 |
Abaqus Analysis User's Guide (2013), 6.13 Version.
|
3 |
Alva, G.M.S. and de Cresce El, A.L.H. (2013), "Moment-rotation relationship of RC beam-column connections: Experimental tests and analytical model", Eng. Struct., 56, 1427-1438. https://doi.org/10.1016/j.engstruct.2013.07.016.
DOI
|
4 |
ACI 408 Committee (2003), Bond and Development of Straight Reinforcing Bars in Tension: (ACI 408R-03), Concrete Inst., Farmington Hills, MI, USA.
|
5 |
Ashtiani, M.S., Dhakal, R.P., Scott, A.N. and Bull, D.K. (2013), "Cyclic beam bending test for assessment of bond-slip behaviour", Eng. Struct., 56, 1684-1697. https://doi.org/10.1016/j.engstruct.2013.08.005.
DOI
|
6 |
Bergner H. (1997), Rissbreitenbeschrankung zwangbeanspruchter Bauteile aus hochfestem Normalbeton, Deutscher Ausschuss fur Stahlbeton, 482.
|
7 |
Caprili, S., Mattei, F., Gigliotti, R. and Salvatore, W. (2018), "Modified cyclic steel law including bond-slip for analysis of RC structures with plain bars", Earthq. Struct., 14(3), 187-201. https://doi.org/10.12989/eas.2018.14.3.187.
DOI
|
8 |
Balazs, G.L. (1993), "Cracking analysis based on slip and bond stresses", ACI Mater. J., 90, 340-340.
|
9 |
Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
DOI
|
10 |
Belarbi, A. and Hsu, T.T. (1994), "Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete", Struct. J., 91(4), 465-474.
|
11 |
Silva, B.D.V., Barbosa, M.P., Silva Filho, L.C.P.D. and Lorrain, M.S. (2013), "Experimental investigation on the use of steelconcrete bond tests for estimating axial compressive strength of concrete: part 1", Revista IBRACON de Estruturas e Materiais, 6(5), 715-736. https://doi.org/10.1590/S1983-41952013000500003.
DOI
|
12 |
Mousavi, S.S. and Dehestani, M. (2015), "Implementation of bond-slip effects on behaviour of slabs in structures", Comput. Concrete, 16(2), 311-327. http://doi.org/10.12989/cac.2015.16.2.311.
DOI
|
13 |
Rabczuk, T. and Belytschko, T. (2007), "A three-dimensional large deformation meshfree method for arbitrary evolving cracks", Comput. Meth. Appl. Mech. Eng., 196(29-30), 2777-2799. https://doi.org/10.1016/j.cma.2006.06.020.
DOI
|
14 |
Rabczuk, T., Akkermann, J. and Eibl, J. (2005), "A numerical model for reinforced concrete structures", Int. J. Solid. Struct., 42(5-6), 1327-1354. https://doi.org/10.1016/j.ijsolstr.2004.07.019.
DOI
|
15 |
Rabczuk, T., Zi, G., Bordas, S. and Nguyen-Xuan, H. (2008), "A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures", Eng. Fract. Mech., 75(16), 4740-4758. https://doi.org/10.1016/j.engfracmech.2008.06.019.
DOI
|
16 |
Harajli, M.H. (2007), "Numerical bond analysis using experimentally derived local bond laws: a powerful method for evaluating the bond strength of steel bars", J. Struct. Eng., 133(5), 695-705. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:5(695).
DOI
|
17 |
De Teran, J.R.D. and Haach, V.G. (2018), "Equivalent stress-strain law for embedded reinforcements considering bond-slip effects", Eng. Struct.", 165, 247-253. https://doi.org/10.1016/j.engstruct.2018.03.045.
DOI
|
18 |
Du, Y., Clark, L.A. and Chan, A.H. (2007), "Impact of reinforcement corrosion on ductile behavior of reinforced concrete beams", ACI Struct. J., 104(3), 285.
|
19 |
Gambarova, P.G. and Rosati, G.P. (1997), "Bond and splitting in bar pull-out: behavioural laws and concrete cover role", Mag. Concrete Res., 49(179), 99-110. https://doi.org/10.1680/macr.1997.49.179.99.
DOI
|
20 |
Mohemmi, M., Broujerdian, V. and Rajaeian, P. (2020), "An equivalent method for bar slip simulation in reinforced concrete frames", Int. J. Civil Eng., 1-13.
DOI
|
21 |
Lykidis, G.C. and Spiliopoulos, K.V. (2008), "3D solid finite-element analysis of cyclically loaded RC structures allowing embedded reinforcement slippage", J. Struct. Eng., 134(4), 629-638. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:4(629).
DOI
|
22 |
Lee, W., Kwak, H.G. and Hwang, J.Y. (2019), "Bond-slip effect in steel-concrete composite flexural members: Part 1-Simplified numerical model", Steel Compos. Struct., 32(4), 537-548. https://doi.org/10.12989/scs.2019.32.4.537.
DOI
|
23 |
Lee, W., Kwak, H.G. and Kim, J.R. (2019), "Bond-slip effect in steel-concrete composite flexural members: Part 2-Improvement of shear stud spacing in SCP", Steel Compos. Struct., 32(4), 549-557. https://doi.org/10.12989/scs.2019.32.4.549.
DOI
|
24 |
Luccioni, B.M., Lopez, D.E. and Danesi, R.F. (2005), "Bond-slip in reinforced concrete elements", J. Struct. Eng., 131(11), 1690-1698. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:11(1690).
DOI
|
25 |
Mertol, H.C., Baran, E. and Bello, H.J. (2015), "Flexural behavior of lightly and heavily reinforced steel fiber concrete beams", Constr. Build. Mater., 98, 185-193. https://doi.org/10.1016/j.conbuildmat.2015.08.032.
DOI
|
26 |
Zhu, W. and Francois, R. (2014), "Corrosion of the reinforcement and its influence on the residual structural performance of a 26-year-old corroded RC beam", Constr. Build. Mater., 51, 461-472. https://doi.org/10.1016/j.conbuildmat.2013.11.015.
DOI
|
27 |
Holschemacher, K., Weisse, D. and Klotz, S. (2004), "Bond of reinforcement in ultra high strength concrete", Proceedings of the International Symposium on UHPC, Kassel, Germany.
|
28 |
Tang, C.W. (2018), "Local bond-slip behavior of medium and high strength fiber reinforced concrete after exposure to high temperatures", Struct. Eng. Mech., 66(4), 477-485. https://doi.org/10.12989/sem.2018.66.4.477.
DOI
|
29 |
Wu, Y.F. and Zhao, X.M. (2013), "Unified bond stress-slip model for reinforced concrete", J. Struct. Eng., 139(11), 1951-1962. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000747.
DOI
|
30 |
Rabczuk, T., Zi, G., Bordas, S. and Nguyen-Xuan, H. (2010), "A simple and robust three-dimensional cracking-particle method without enrichment", Comput. Meth. Appl. Mech. Eng., 199(37-40), 2437-2455. https://doi.org/10.1016/j.cma.2010.03.031.
DOI
|
31 |
Wang, Z.H., Li, L., Zhang, Y.X. and Zheng, S.S. (2019), "Reinforcement model considering slip effect", Eng. Struct., 198, 109493. https://doi.org/10.1016/j.engstruct.2019.109493.
DOI
|
32 |
Kwak, H.G. and Kim, S.P. (2001), "Nonlinear analysis of RC beam subject to cyclic loading", J. Struct. Eng., 127(12), 1436-1444. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:12(1436).
DOI
|
33 |
Harajli, M.H., Hout, M. and Jalkh, W. (1995), "Local bond stressslip behavior of reinforcing bars embedded in plain and fiber concrete", Mater. J., 92(4), 343-353.
|
34 |
Hashemi, S.S., Tasnimi, A.A. and Soltani, M. (2009), "Nonlinear cyclic analysis of reinforced concrete frames, utilizing new joint element", Sci. Iran., Trans. A, 16(5), 490-501.
|
35 |
Harajli, M., Hamad, B. and Karam, K. (2002), "Bond-slip response of reinforcing bars embedded in plain and fiber concrete", J. Mater. Civil Eng., 14(6), 503-511. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:6(503).
DOI
|
36 |
Xiu Li, C., Shen, D.J., He, P.L., Dong, X.F. and Zhang, H.F. (2012), "Crack width calculation of steel reinforced concrete beams considering the bond-slip", Appl. Mech. and Mater., 166, 1395-1398. https://doi.org/10.4028/www.scientific.net/AMM.166-169.1395.
DOI
|
37 |
Jiang, T., Zhang, X., Wu, Z. and Abdellahi, M.M. (2017), "Bond-slip response of plain bars embedded in self-compacting lightweight aggregate concrete under lateral tensions", J. Mater. Civil Eng., 29(9), 04017084. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001893.
DOI
|
38 |
Khalfallah, S. (2008), "Tension stiffening bond modelling of cracked flexural reinforced concrete beams", J. Civil Eng. Manage, 14(2), 131-137. https://doi.org/10.3846/1392-3730.2008.14.8.
DOI
|
39 |
Kwak, H.G. and Filippou, F.C. (1995), "A new reinforcing steel model with bond-slip", Struct. Eng. Mech., 3(4), 299-312. http://doi.org/10.12989/sem.1995.3.4.299.
DOI
|
40 |
Kwak, H.G. and Kim, S.P. (2002), "Cyclic moment-curvature relation of an RC beam", Mag. Concrete Res., 54(6), 435-447. https://doi.org/10.1680/macr.2002.54.6.435.
DOI
|
41 |
Han, D., Keuser, M., Zhao, X. and Langer, B. (2011), "Influence of transverse reinforcing bar spacing on flexural crack spacing on reinforced concrete", Proc. Eng., 14, 2238-2245. https://doi.org/10.1016/j.proeng.2011.07.282.
DOI
|
42 |
Rabczuk, T. and Belytschko, T. (2004), "Cracking particles: a simplified meshfree method for arbitrary evolving cracks", Int. J. Numer. Meth. Eng., 61(13), 2316-2343. https://doi.org/10.1002/nme.1151.
DOI
|
43 |
Dehestani, M. and Mousavi, S.S. (2015), "Modified steel bar model incorporating bond-slip effects for embedded element method", Constr. Build. Mater., 81, 284-290. https://doi.org/10.1016/j.conbuildmat.2015.02.027.
DOI
|
44 |
Dehestani, M., Asadi, A. and Mousavi, S.S. (2017), "On discrete element method for rebar-concrete interaction", Constr. Build. Mater., 151, 220-227. https://doi.org/10.1016/j.conbuildmat.2017.06.086.
DOI
|
45 |
Eligehausen, R., Popov, E.P. and Bertero, V.V. (1982), "Local bond stress-slip relationships of deformed bars under generalized excitations", Proc. Eur. Conf. Earthq. Eng., 4. http://doi.org/10.18419/opus-415.
DOI
|
46 |
fib (2010), Bulletin 55: Model Code for Concrete Structures 2010, First Complete Draft, Int. Fed. Struct. Concrete, Lausanne.
|