Browse > Article
http://dx.doi.org/10.12989/acc.2021.12.3.175

Simplified approach on modeling of embedded reinforcements in flexural concrete members  

Hosseini, Seyed Muoud (Faculty of Civil Engineering, Babol Noshirvani University of Technology)
Ghomian, Majid (Faculty of Civil Engineering, Babol Noshirvani University of Technology)
BaniAsad, Elham (Faculty of Civil Engineering, Babol Noshirvani University of Technology)
Dehestani, Mehdi (Faculty of Civil Engineering, Babol Noshirvani University of Technology)
Publication Information
Advances in concrete construction / v.12, no.3, 2021 , pp. 175-193 More about this Journal
Abstract
Several factors need to be considered in modeling of reinforced concrete beams. Bond-slip is one of the most important factors that play a key role in the behavior of reinforced concrete structures, under static and dynamic loads. A comparison between the results of experimental tests and numerical models show that considering a complete bond (perfect with no slip) instead of real bond-slip phenomenon, in numerical finite element models leads to higher estimations for the stiffness. In this study, the effects of the bond-slip phenomenon on the behavior of the reinforced concrete beams are considered. It is shown that the influence of bond-slip behavior between steel and concrete depends on the compressive strength of concrete, the concrete cover, stirrups and rebar diameter. Subsequently, a method is proposed to consider the effects of the interfacial behavior between concrete and rebar while a complete bond assumption remains and the rebar is introduced as embedded element in concrete. The bond-slip effect is considered by adding an equivalent strain of bond to the strain of steel rebar and then modifying the terms of the modulus of elasticity of steel. Validation model and parametric analyses are conducted to consider the effects of bond-slip properties and other parameters affecting the behavior of reinforced concrete beams.
Keywords
bond-slip; embedded element; finite element model; reinforced concrete beam; steel rebar;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 ACI 318 Committee (2014), Building Code Requirements for Structural Concrete: (ACI 318-14), and Commentary (ACI 318R-14), Concrete Inst., Farmington Hills, MI, USA.
2 Abaqus Analysis User's Guide (2013), 6.13 Version.
3 Alva, G.M.S. and de Cresce El, A.L.H. (2013), "Moment-rotation relationship of RC beam-column connections: Experimental tests and analytical model", Eng. Struct., 56, 1427-1438. https://doi.org/10.1016/j.engstruct.2013.07.016.   DOI
4 ACI 408 Committee (2003), Bond and Development of Straight Reinforcing Bars in Tension: (ACI 408R-03), Concrete Inst., Farmington Hills, MI, USA.
5 Ashtiani, M.S., Dhakal, R.P., Scott, A.N. and Bull, D.K. (2013), "Cyclic beam bending test for assessment of bond-slip behaviour", Eng. Struct., 56, 1684-1697. https://doi.org/10.1016/j.engstruct.2013.08.005.   DOI
6 Bergner H. (1997), Rissbreitenbeschrankung zwangbeanspruchter Bauteile aus hochfestem Normalbeton, Deutscher Ausschuss fur Stahlbeton, 482.
7 Caprili, S., Mattei, F., Gigliotti, R. and Salvatore, W. (2018), "Modified cyclic steel law including bond-slip for analysis of RC structures with plain bars", Earthq. Struct., 14(3), 187-201. https://doi.org/10.12989/eas.2018.14.3.187.   DOI
8 Balazs, G.L. (1993), "Cracking analysis based on slip and bond stresses", ACI Mater. J., 90, 340-340.
9 Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).   DOI
10 Belarbi, A. and Hsu, T.T. (1994), "Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete", Struct. J., 91(4), 465-474.
11 Silva, B.D.V., Barbosa, M.P., Silva Filho, L.C.P.D. and Lorrain, M.S. (2013), "Experimental investigation on the use of steelconcrete bond tests for estimating axial compressive strength of concrete: part 1", Revista IBRACON de Estruturas e Materiais, 6(5), 715-736. https://doi.org/10.1590/S1983-41952013000500003.   DOI
12 Mousavi, S.S. and Dehestani, M. (2015), "Implementation of bond-slip effects on behaviour of slabs in structures", Comput. Concrete, 16(2), 311-327. http://doi.org/10.12989/cac.2015.16.2.311.   DOI
13 Rabczuk, T. and Belytschko, T. (2007), "A three-dimensional large deformation meshfree method for arbitrary evolving cracks", Comput. Meth. Appl. Mech. Eng., 196(29-30), 2777-2799. https://doi.org/10.1016/j.cma.2006.06.020.   DOI
14 Rabczuk, T., Akkermann, J. and Eibl, J. (2005), "A numerical model for reinforced concrete structures", Int. J. Solid. Struct., 42(5-6), 1327-1354. https://doi.org/10.1016/j.ijsolstr.2004.07.019.   DOI
15 Rabczuk, T., Zi, G., Bordas, S. and Nguyen-Xuan, H. (2008), "A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures", Eng. Fract. Mech., 75(16), 4740-4758. https://doi.org/10.1016/j.engfracmech.2008.06.019.   DOI
16 Harajli, M.H. (2007), "Numerical bond analysis using experimentally derived local bond laws: a powerful method for evaluating the bond strength of steel bars", J. Struct. Eng., 133(5), 695-705. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:5(695).   DOI
17 De Teran, J.R.D. and Haach, V.G. (2018), "Equivalent stress-strain law for embedded reinforcements considering bond-slip effects", Eng. Struct.", 165, 247-253. https://doi.org/10.1016/j.engstruct.2018.03.045.   DOI
18 Du, Y., Clark, L.A. and Chan, A.H. (2007), "Impact of reinforcement corrosion on ductile behavior of reinforced concrete beams", ACI Struct. J., 104(3), 285.
19 Gambarova, P.G. and Rosati, G.P. (1997), "Bond and splitting in bar pull-out: behavioural laws and concrete cover role", Mag. Concrete Res., 49(179), 99-110. https://doi.org/10.1680/macr.1997.49.179.99.   DOI
20 Mohemmi, M., Broujerdian, V. and Rajaeian, P. (2020), "An equivalent method for bar slip simulation in reinforced concrete frames", Int. J. Civil Eng., 1-13.   DOI
21 Lykidis, G.C. and Spiliopoulos, K.V. (2008), "3D solid finite-element analysis of cyclically loaded RC structures allowing embedded reinforcement slippage", J. Struct. Eng., 134(4), 629-638. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:4(629).   DOI
22 Lee, W., Kwak, H.G. and Hwang, J.Y. (2019), "Bond-slip effect in steel-concrete composite flexural members: Part 1-Simplified numerical model", Steel Compos. Struct., 32(4), 537-548. https://doi.org/10.12989/scs.2019.32.4.537.   DOI
23 Lee, W., Kwak, H.G. and Kim, J.R. (2019), "Bond-slip effect in steel-concrete composite flexural members: Part 2-Improvement of shear stud spacing in SCP", Steel Compos. Struct., 32(4), 549-557. https://doi.org/10.12989/scs.2019.32.4.549.   DOI
24 Luccioni, B.M., Lopez, D.E. and Danesi, R.F. (2005), "Bond-slip in reinforced concrete elements", J. Struct. Eng., 131(11), 1690-1698. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:11(1690).   DOI
25 Mertol, H.C., Baran, E. and Bello, H.J. (2015), "Flexural behavior of lightly and heavily reinforced steel fiber concrete beams", Constr. Build. Mater., 98, 185-193. https://doi.org/10.1016/j.conbuildmat.2015.08.032.   DOI
26 Zhu, W. and Francois, R. (2014), "Corrosion of the reinforcement and its influence on the residual structural performance of a 26-year-old corroded RC beam", Constr. Build. Mater., 51, 461-472. https://doi.org/10.1016/j.conbuildmat.2013.11.015.   DOI
27 Holschemacher, K., Weisse, D. and Klotz, S. (2004), "Bond of reinforcement in ultra high strength concrete", Proceedings of the International Symposium on UHPC, Kassel, Germany.
28 Tang, C.W. (2018), "Local bond-slip behavior of medium and high strength fiber reinforced concrete after exposure to high temperatures", Struct. Eng. Mech., 66(4), 477-485. https://doi.org/10.12989/sem.2018.66.4.477.   DOI
29 Wu, Y.F. and Zhao, X.M. (2013), "Unified bond stress-slip model for reinforced concrete", J. Struct. Eng., 139(11), 1951-1962. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000747.   DOI
30 Rabczuk, T., Zi, G., Bordas, S. and Nguyen-Xuan, H. (2010), "A simple and robust three-dimensional cracking-particle method without enrichment", Comput. Meth. Appl. Mech. Eng., 199(37-40), 2437-2455. https://doi.org/10.1016/j.cma.2010.03.031.   DOI
31 Wang, Z.H., Li, L., Zhang, Y.X. and Zheng, S.S. (2019), "Reinforcement model considering slip effect", Eng. Struct., 198, 109493. https://doi.org/10.1016/j.engstruct.2019.109493.   DOI
32 Kwak, H.G. and Kim, S.P. (2001), "Nonlinear analysis of RC beam subject to cyclic loading", J. Struct. Eng., 127(12), 1436-1444. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:12(1436).   DOI
33 Harajli, M.H., Hout, M. and Jalkh, W. (1995), "Local bond stressslip behavior of reinforcing bars embedded in plain and fiber concrete", Mater. J., 92(4), 343-353.
34 Hashemi, S.S., Tasnimi, A.A. and Soltani, M. (2009), "Nonlinear cyclic analysis of reinforced concrete frames, utilizing new joint element", Sci. Iran., Trans. A, 16(5), 490-501.
35 Harajli, M., Hamad, B. and Karam, K. (2002), "Bond-slip response of reinforcing bars embedded in plain and fiber concrete", J. Mater. Civil Eng., 14(6), 503-511. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:6(503).   DOI
36 Xiu Li, C., Shen, D.J., He, P.L., Dong, X.F. and Zhang, H.F. (2012), "Crack width calculation of steel reinforced concrete beams considering the bond-slip", Appl. Mech. and Mater., 166, 1395-1398. https://doi.org/10.4028/www.scientific.net/AMM.166-169.1395.   DOI
37 Jiang, T., Zhang, X., Wu, Z. and Abdellahi, M.M. (2017), "Bond-slip response of plain bars embedded in self-compacting lightweight aggregate concrete under lateral tensions", J. Mater. Civil Eng., 29(9), 04017084. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001893.   DOI
38 Khalfallah, S. (2008), "Tension stiffening bond modelling of cracked flexural reinforced concrete beams", J. Civil Eng. Manage, 14(2), 131-137. https://doi.org/10.3846/1392-3730.2008.14.8.   DOI
39 Kwak, H.G. and Filippou, F.C. (1995), "A new reinforcing steel model with bond-slip", Struct. Eng. Mech., 3(4), 299-312. http://doi.org/10.12989/sem.1995.3.4.299.   DOI
40 Kwak, H.G. and Kim, S.P. (2002), "Cyclic moment-curvature relation of an RC beam", Mag. Concrete Res., 54(6), 435-447. https://doi.org/10.1680/macr.2002.54.6.435.   DOI
41 Han, D., Keuser, M., Zhao, X. and Langer, B. (2011), "Influence of transverse reinforcing bar spacing on flexural crack spacing on reinforced concrete", Proc. Eng., 14, 2238-2245. https://doi.org/10.1016/j.proeng.2011.07.282.   DOI
42 Rabczuk, T. and Belytschko, T. (2004), "Cracking particles: a simplified meshfree method for arbitrary evolving cracks", Int. J. Numer. Meth. Eng., 61(13), 2316-2343. https://doi.org/10.1002/nme.1151.   DOI
43 Dehestani, M. and Mousavi, S.S. (2015), "Modified steel bar model incorporating bond-slip effects for embedded element method", Constr. Build. Mater., 81, 284-290. https://doi.org/10.1016/j.conbuildmat.2015.02.027.   DOI
44 Dehestani, M., Asadi, A. and Mousavi, S.S. (2017), "On discrete element method for rebar-concrete interaction", Constr. Build. Mater., 151, 220-227. https://doi.org/10.1016/j.conbuildmat.2017.06.086.   DOI
45 Eligehausen, R., Popov, E.P. and Bertero, V.V. (1982), "Local bond stress-slip relationships of deformed bars under generalized excitations", Proc. Eur. Conf. Earthq. Eng., 4. http://doi.org/10.18419/opus-415.   DOI
46 fib (2010), Bulletin 55: Model Code for Concrete Structures 2010, First Complete Draft, Int. Fed. Struct. Concrete, Lausanne.