Free vibration of porous FG nonlocal modified couple nanobeams via a modified porosity model |
Ghandourah, Emad E.
(Nuclear Engineering Dept., Faculty of Engineering, King Abdulaziz University)
Ahmed, Hitham M. (Mining Engineering Dept., Faculty of Engineering, King Abdulaziz University) Eltaher, Mohamed A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) Attia, Mohamed A. (Mechanical Design & Production Department, Faculty of Engineering, Zagazig University) Abdraboh, Azza M. (Physics Department, Faculty of Science, Banha University) |
1 | Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2021a), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347. DOI |
2 | Ebrahimi, F. and Salari, E. (2015), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. http://doi.org/10.1016/j.compstruct.2015.03.023. DOI |
3 | Ebrahimi, F., Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y. DOI |
4 | Ebrahimi, F., Jafari, A. and Selvamani, R. (2020), "Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment", Adv. Nano Res., 8(1), 83-94. https://doi.org/10.12989/anr.2020.8.1.083. DOI |
5 | Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007. DOI |
6 | Abdelrahman, A.A. and Eltaher, M.A. (2020), "On bending and buckling responses of perforated nanobeams including surface energy for different beams theories", Eng. Comput., 1-27. https://doi.org/10.1007/s00366-020-01211-8. DOI |
7 | Abdelrahman, A.A., Esen, I., O zarpa, C. and Eltaher, M.A. (2021), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Model., 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008. DOI |
8 | Akbari, H., Azadi, M. and Fahham, H. (2020), "Free vibration analysis of thick sandwich cylindrical panels with saturated FGporous core", Mech. Based Des. Struct., 1-19. https://doi.org/10.1080/15397734.2020.1748051. DOI |
9 | Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2020a), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-020-01070-3. DOI |
10 | Alazwari, M.A., Abdelrahman, A.A., Wagih, A., Eltaher, M.A. and Abd-El-Mottaleb, H.E. (2021), Static analysis of cutout microstructures incorporating the microstructure and surface effects. Steel Compos. Struct., 38(5), 583-597. https://doi.org/10.12989/scs.2021.38.5.583. DOI |
11 | Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021a), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091. DOI |
12 | Fouda, N., El-Midany, T. and Sadoun, A.M. (2017), "Bending, buckling and vibration of a functionally graded porous beam using finite elements", J. Appl. Comput. Mech., 3(4), 274-282. https://doi.org/10.22055/JACM.2017.21924.1121. DOI |
13 | Asemi, K., Babaei, M. and Kiarasi, F. (2020), "Static, natural frequency and dynamic analyses of functionally graded porous annular sector plates reinforced by graphene platelets", Mech. Based Des. Struct., 1-29. https://doi.org/10.1080/15397734.2020.1822865. DOI |
14 | Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019a), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089. DOI |
15 | Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10(3), 281-293. https://doi.org/10.12989/anr.2021.10.3.281. DOI |
16 | Hamed, M.A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w. DOI |
17 | Hamidi, B.A., Hosseini, S.A., Hayati, H. and Hassannejad, R. (2020), "Forced axial vibration of micro and nanobeam under axial harmonic moving and constant distributed forces via nonlocal strain gradient theory", Mech. Based Des. Struct., 1-15. https://doi.org/10.1080/15397734.2020.1744003. DOI |
18 | Kim, J., Zur, K.K. and Reddy, J.N. (2019), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. https://doi.org/10.1016/j.compstruct.2018.11.023. DOI |
19 | Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. http://doi.org/10.1016/j.ijengsci.2016.07.011. DOI |
20 | Karamanli, A. and Aydogdu, M. (2020), "Structural dynamics and stability analysis of 2D-FG microbeams with two-directional porosity distribution and variable material length scale parameter", Mech. Based Des. Struct., 48(2), 164-191. https://doi.org/10.1080/15397734.2019.1627219. DOI |
21 | Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. http://doi.org/10.1016/j.matdes.2016.12.061. DOI |
22 | Koochi, A. and Goharimanesh, M. (2021), "Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: The energy balance method", Rep. Mech. Eng., 2(1), 41-50. https://doi.org/10.31181/rme200102041g. DOI |
23 | Su, J., Qu, Y., Zhang, K., Zhang, Q. and Tian, Y. (2021), "Vibration analysis of functionally graded porous piezoelectric deep curved beams resting on discrete elastic supports", Thin Wall. Struct., 164, 107838. https://doi.org/10.1016/j.tws.2021.107838. DOI |
24 | Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X. DOI |
25 | Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. http://doi.org/10.12989/scs.2021.38.3.293. DOI |
26 | Lu, L., She, G.L. and Guo, X. (2021a), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428. DOI |
27 | Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013. DOI |
28 | Jena, S.K., Chakraverty, S., Malikan, M. and Tornabene, F. (2019), "Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory", Mech. Based Des. Struct., 1-15. https://doi.org/10.1080/15397734.2019.1698437. DOI |
29 | Farzam, A. and Hassani, B. (2019), "Isogeometric analysis of inplane functionally graded porous microplates using modified couple stress theory", Aerosp. Sci. Technol., 91, 508-524. https://doi.org/10.1016/j.ast.2019.05.012. DOI |
30 | Esmaeili, M. and Beni, Y.T. (2019), "Vibration and buckling analysis of functionally graded flexoelectric smart beam", J. Appl. Comput. Mech., 5(5), 900-917. https://doi.org/10.22055/JACM.2019.27857.1439. DOI |
31 | Esmaeilzadeh, M., Golmakani, M.E. and Sadeghian, M. (2020), "A nonlocal strain gradient model for nonlinear dynamic behavior of bi-directional functionally graded porous nanoplates on elastic foundations", Mech. Based Des. Struct., 1-20. https://doi.org/10.1080/15397734.2020.1845965. DOI |
32 | Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2020b), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J Vib. Control, 1077546320947302. https://doi.org/10.1177/1077546320947302. DOI |
33 | Lyashenko, I.A., Borysiuk, V.N. and Popov, V.L. (2020), "Dynamical model of the asymmetric actuator of directional motion based on power-law graded materials", Mech. Eng., 245-254. https://doi.org/10.22190/FUME200129020L. DOI |
34 | Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68(1-3), 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2. DOI |
35 | She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407. DOI |
36 | Tapia, G., Elwany, A.H. and Sang, H. (2016), "Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models", Addit. Manuf., 12, 282-290. https://doi.org/10.1016/j.addma.2016.05.009. DOI |
37 | Fan, F., Cai, X., Sahmani, S. and Safaei, B. (2021), "Isogeometric thermal postbuckling analysis of porous FGM quasi-3D nanoplates having cutouts with different shapes based upon surface stress elasticity", Compos. Struct., 262, 113604. https://doi.org/10.1016/j.compstruct.2021.113604. DOI |
38 | Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., 8(4), 283-292. https://doi.org/10.12989/anr.2020.8.4.283. DOI |
39 | Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. https://doi.org/10.12989/scs.2020.36.3.293. DOI |
40 | She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027. DOI |
41 | Soliman, A.E., Eltaher, M.A., Attia, M.A. and Alshorbagy, A.E. (2018), "Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility", Struct. Eng. Mech., 66(1), 85-96. http://dx.doi.org/10.12989/sem.2018.66.1.085. DOI |
42 | Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007. DOI |
43 | Dong, Y.H., He, L.W., Wang, L., Li, Y.H. and Yang, J. (2018), "Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: an analytical study", Aerosp. Sci. Technol., 82, 466-478. https://doi.org/10.1016/j.ast.2018.09.037. DOI |
44 | Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008. DOI |
45 | Mindlin, R.D, (1963), "Influence of couple-stresses on stress concentrations", Experimental Mechanics, 3, 1-7. DOI |
46 | Mohammadimehr, M. and Meskini, M. (2020), "Analysis of porous micro sandwich plate: Free and forced vibration under magneto-electro-elastic loadings", Adv. Nano Res., 8(1), 69-82. https://doi.org/10.12989/anr.2020.8.1.069. DOI |
47 | Moory-Shirbani, M., Sedighi, H.M., Ouakad, H.M. and Najar, F. (2018), "Experimental and mathematical analysis of a piezoelectrically actuated multilayered imperfect microbeam subjected to applied electric potential", Compos. Struct., 184, 950-960. https://doi.org/10.1016/j.compstruct.2017.10.062. DOI |
48 | Sahmani, S. and Madyira, D.M. (2019), "Nonlocal strain gradient nonlinear primary resonance of micro/nano-beams made of GPL reinforced FG porous nanocomposite materials", Mech. Based Des. Struct., 1-28. https://doi.org/10.1080/15397734.2019.1695627 DOI |
49 | Sedighi, H.M. and Daneshmand, F. (2014), "Static and dynamic pull-in instability of multi-walled carbon nanotube probes by He's iteration perturbation method", J. Mech. Sci. Technol., 28(9), 3459-3469. https://doi.org/10.1007/s12206-014-0807-x. DOI |
50 | Sedighi, H.M., Abouelregal, A.E. and Faghidian, S.A. (2021), "Modified couple stress flexure mechanics of nanobeams", Physica Scripta, 96(11), 115402. https://doi.org/10.1088/1402-4896/ac13e2. DOI |
51 | Abo-Bakr, R.M., Eltaher, M.A. and Attia, M.A. (2020a), "Pull-in and freestanding instability of actuated functionally graded nanobeams including surface and stiffening effects", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01146-0. DOI |
52 | Abo-Bakr, H.M., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020b), "Weight optimization of axially functionally graded microbeams under buckling and vibration behaviors", Mech. Based Des. Struct., 1-22. https://doi.org/10.1080/15397734.2020.1838298. DOI |
53 | Lu, L., Wang, S., Li, M. and Guo, X. (2021b), "Free vibration and dynamic stability of functionally graded composite microtubes reinforced with graphene platelets", Compos. Struct., 272, 114231. https://doi.org/10.1016/j.compstruct.2021.114231. DOI |
54 | Le, N.L., Nguyen, T.P., Vu, H.N., Nguyen, T.T. and Vu, M.D. (2020), "An analytical approach of nonlinear thermomechanical buckling of functionally graded graphene-reinforced composite laminated cylindrical shells under compressive axial load surrounded by elastic foundation", J. Appl. Comput. Mech., 6(2), 357-372. https://doi.org/10.22055/JACM.2019.29527.1609. DOI |
55 | Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004. DOI |
56 | Ebrahimi, F. and Dabbagh, A. (2019), "A novel porosity-based homogenization scheme for propagation of waves in axially-excited FG nanobeams", Adv. Nano Res., 7(6), 379-390. https://doi.org/10.12989/anr.2019.7.6.379. DOI |
57 | Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586. DOI |
58 | Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013. DOI |
59 | Ebrahimi, F., Seyfi, A., Nouraei, M. and Haghi, P. (2021), "Influence of magnetic field on the wave propagation response of functionally graded (FG) beam lying on elastic foundation in thermal environment", Wave. Random Complex, 1-19. https://doi.org/10.1080/17455030.2020.1847359. DOI |
60 | Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039. DOI |
61 | Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109. DOI |
62 | Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5. DOI |
63 | Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2021a), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2021.1904255. DOI |
64 | Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021b), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01389-5. DOI |
65 | Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021b), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27(4), 679-689. https://doi.org/10.12989/sss.2021.27.4.679. DOI |
66 | Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002. DOI |
67 | Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R. and Tounsi, A. "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete, 26(1), 63-74. http://doi.org/10.12989/cac.2020.26.1.063. DOI |
68 | Abo-Bakr, R.M., Abo-Bakr, H.M., Mohamed, SA. and Eltaher, M.A. (2021a), "Optimal weight for buckling of FG beam under variable axial load using Pareto optimality", Compos. Struct., 258, 113193. https://doi.org/10.1016/j.compstruct.2020.113193. DOI |
69 | Abo-bakr, H.M., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2021b), "Multi-objective shape optimization for axially functionally graded microbeams", Compos. Struct., 258, 113370. https://doi.org/10.1016/j.compstruct.2020.113370. DOI |
70 | Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R. and Tornabene, F. (2021b), "Buckling Analysis of CNTRC Curved Sandwich Nanobeams in Thermal Environment", Appl. Sci., 11(7), 3250. https://doi.org/10.3390/app11073250. DOI |
71 | Farajpour, A., Rastgoo, A. and Mohammadi, M. (2014), "Surface effects on the mechanical characteristics of microtubule networks in living cells", Mech. Res. Commun., 57, 18-26. http://doi.org/10.1016/j.mechrescom.2014.01.005. DOI |
72 | Attia, M.A. and Mohamed, S.A. (2020), "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Eng. Comput., 1-30. https://doi.org/10.1007/s00366-020-01080-1. DOI |
73 | Ebrahimi, F., Daman, M. and Mahesh, V. (2019), "Thermomechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory", Adv. Nano Res., 7(4), 249-263. https://doi.org/10.12989/anr.2019.7.4.249. DOI |
74 | Fattahi, A.M., Sahmani, S. and Ahmed, N.A. (2020), "Nonlocal strain gradient beam model for nonlinear secondary resonance analysis of functionally graded porous micro/nano-beams under periodic hard excitations", Mech. Based Des. Struct., 48(4), 403-432. https://doi.org/10.1080/15397734.2019.1624176. DOI |
75 | Xu, X., Karami, B. and Shahsavari, D. (2021), "Time-dependent behavior of porous curved nanobeam", Int. J. Eng. Sci., 160, 103455. https://doi.org/10.1016/j.ijengsci.2021.103455. DOI |
76 | Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Braz. Soc. Mech. Sci. Eng., 40(3), 1-10. https://doi.org/10.1007/s40430-018-1065-0. DOI |
77 | Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803. DOI |
78 | Esen, I., O zarpa, C. and Eltaher, M.A. (2021c), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552. DOI |
79 | Aria, A.I., Rabczuk, T. and Friswell, M.I. (2019), "A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams", Eur. J. Mech. A. Solids, 77, 103767. https://doi.org/10.1016/j.euromechsol.2019.04.002. DOI |
80 | Aria, A.I. and Friswell, M.I. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071. DOI |
81 | Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011 DOI |
82 | Attia, M.A. and Rahman, A.A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005. DOI |
83 | Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., 5(4), 393. https://doi.org/10.12989/anr.2017.5.4.393. DOI |
84 | Bashiri, A.H., Akbas, S.D., Abdelrahman, A.A., Assie, A., Eltaher, M.A. and Mohamed, E.F. (2021), "Vibration of multilayered functionally graded deep beams under thermal load", Geomech. Eng., 24(6), 545-557. https://doi.org/10.12989/gae.2021.24.6.545. DOI |
85 | Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. Part B Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020. DOI |
86 | Alipour, M.M. and Shariyat, M. (2019), "Nonlocal zigzag analytical solution for Laplacian hygrothermal stress analysis of annular sandwich macro/nanoplates with poor adhesions and 2D-FGM porous cores", Arch. Civil Mech. Eng., 19(4), 1211-1234. https://doi.org/10.1016/j.acme.2019.06.008. DOI |
87 | Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006. DOI |
88 | Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643. DOI |
![]() |