Browse > Article
http://dx.doi.org/10.12989/anr.2021.11.4.405

Free vibration of porous FG nonlocal modified couple nanobeams via a modified porosity model  

Ghandourah, Emad E. (Nuclear Engineering Dept., Faculty of Engineering, King Abdulaziz University)
Ahmed, Hitham M. (Mining Engineering Dept., Faculty of Engineering, King Abdulaziz University)
Eltaher, Mohamed A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University)
Attia, Mohamed A. (Mechanical Design & Production Department, Faculty of Engineering, Zagazig University)
Abdraboh, Azza M. (Physics Department, Faculty of Science, Banha University)
Publication Information
Advances in nano research / v.11, no.4, 2021 , pp. 405-422 More about this Journal
Abstract
This paper explores the size-dependent vibration response of porous functionally graded (FG) micro/nanobeams based on an integrated nonlocal-couple stress continuum model (NLCS). The mutual effect of the microstructure local rotation and nonlocality are modelled using the modified couple stress theory and Eringen nonlocal elasticity theory, respectively, into the classical Euler-Bernoulli beam model. All the material properties of the bulk continuum including the microstructure material length scale parameter (MLSP) are assumed to be graded along the thickness according to a power law. For the first time, the effect of the porosity and voids on the modulus of elasticity and MLSP is taken as a ratio of the mass density with porosity-to-that without porosity. Accounting for the physical neutral axis concept and generalized elasticity theory, Hamilton's principle is utilized to formulate the equations of motion and boundary conditions for the FG porous micro/nanobeams. The analytical solution using Navier method is applied to solve the governing equations and obtain the results. The impact of different parameters such as the gradation index, porosity pattern, porosity parameter, nonlocal parameter, and MLSP on the free vibration characteristics of simply supported FG nanobeams are presented discussed in detail. The current model is efficient in many applications used porous FGM, such as aerospace, nuclear, power plane sheller, and marine structures.
Keywords
analytical solutions; functionally graded structure; modified porosity model; nonlocal-modified couple stress model; size-dependent nanobeams;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2021a), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.   DOI
2 Ebrahimi, F. and Salari, E. (2015), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. http://doi.org/10.1016/j.compstruct.2015.03.023.   DOI
3 Ebrahimi, F., Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y.   DOI
4 Ebrahimi, F., Jafari, A. and Selvamani, R. (2020), "Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment", Adv. Nano Res., 8(1), 83-94. https://doi.org/10.12989/anr.2020.8.1.083.   DOI
5 Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.   DOI
6 Abdelrahman, A.A. and Eltaher, M.A. (2020), "On bending and buckling responses of perforated nanobeams including surface energy for different beams theories", Eng. Comput., 1-27. https://doi.org/10.1007/s00366-020-01211-8.   DOI
7 Abdelrahman, A.A., Esen, I., O zarpa, C. and Eltaher, M.A. (2021), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Model., 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008.   DOI
8 Akbari, H., Azadi, M. and Fahham, H. (2020), "Free vibration analysis of thick sandwich cylindrical panels with saturated FGporous core", Mech. Based Des. Struct., 1-19. https://doi.org/10.1080/15397734.2020.1748051.   DOI
9 Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2020a), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., 1-13. https://doi.org/10.1007/s00366-020-01070-3.   DOI
10 Alazwari, M.A., Abdelrahman, A.A., Wagih, A., Eltaher, M.A. and Abd-El-Mottaleb, H.E. (2021), Static analysis of cutout microstructures incorporating the microstructure and surface effects. Steel Compos. Struct., 38(5), 583-597. https://doi.org/10.12989/scs.2021.38.5.583.   DOI
11 Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021a), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091.   DOI
12 Fouda, N., El-Midany, T. and Sadoun, A.M. (2017), "Bending, buckling and vibration of a functionally graded porous beam using finite elements", J. Appl. Comput. Mech., 3(4), 274-282. https://doi.org/10.22055/JACM.2017.21924.1121.   DOI
13 Asemi, K., Babaei, M. and Kiarasi, F. (2020), "Static, natural frequency and dynamic analyses of functionally graded porous annular sector plates reinforced by graphene platelets", Mech. Based Des. Struct., 1-29. https://doi.org/10.1080/15397734.2020.1822865.   DOI
14 Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019a), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.   DOI
15 Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10(3), 281-293. https://doi.org/10.12989/anr.2021.10.3.281.   DOI
16 Hamed, M.A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 36(4), 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.   DOI
17 Hamidi, B.A., Hosseini, S.A., Hayati, H. and Hassannejad, R. (2020), "Forced axial vibration of micro and nanobeam under axial harmonic moving and constant distributed forces via nonlocal strain gradient theory", Mech. Based Des. Struct., 1-15. https://doi.org/10.1080/15397734.2020.1744003.   DOI
18 Kim, J., Zur, K.K. and Reddy, J.N. (2019), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. https://doi.org/10.1016/j.compstruct.2018.11.023.   DOI
19 Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. http://doi.org/10.1016/j.ijengsci.2016.07.011.   DOI
20 Karamanli, A. and Aydogdu, M. (2020), "Structural dynamics and stability analysis of 2D-FG microbeams with two-directional porosity distribution and variable material length scale parameter", Mech. Based Des. Struct., 48(2), 164-191. https://doi.org/10.1080/15397734.2019.1627219.   DOI
21 Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. http://doi.org/10.1016/j.matdes.2016.12.061.   DOI
22 Koochi, A. and Goharimanesh, M. (2021), "Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: The energy balance method", Rep. Mech. Eng., 2(1), 41-50. https://doi.org/10.31181/rme200102041g.   DOI
23 Su, J., Qu, Y., Zhang, K., Zhang, Q. and Tian, Y. (2021), "Vibration analysis of functionally graded porous piezoelectric deep curved beams resting on discrete elastic supports", Thin Wall. Struct., 164, 107838. https://doi.org/10.1016/j.tws.2021.107838.   DOI
24 Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.   DOI
25 Zhang, Y.Y., Wang, Y.X., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snap-buckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. http://doi.org/10.12989/scs.2021.38.3.293.   DOI
26 Lu, L., She, G.L. and Guo, X. (2021a), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.   DOI
27 Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.   DOI
28 Jena, S.K., Chakraverty, S., Malikan, M. and Tornabene, F. (2019), "Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory", Mech. Based Des. Struct., 1-15. https://doi.org/10.1080/15397734.2019.1698437.   DOI
29 Farzam, A. and Hassani, B. (2019), "Isogeometric analysis of inplane functionally graded porous microplates using modified couple stress theory", Aerosp. Sci. Technol., 91, 508-524. https://doi.org/10.1016/j.ast.2019.05.012.   DOI
30 Esmaeili, M. and Beni, Y.T. (2019), "Vibration and buckling analysis of functionally graded flexoelectric smart beam", J. Appl. Comput. Mech., 5(5), 900-917. https://doi.org/10.22055/JACM.2019.27857.1439.   DOI
31 Esmaeilzadeh, M., Golmakani, M.E. and Sadeghian, M. (2020), "A nonlocal strain gradient model for nonlinear dynamic behavior of bi-directional functionally graded porous nanoplates on elastic foundations", Mech. Based Des. Struct., 1-20. https://doi.org/10.1080/15397734.2020.1845965.   DOI
32 Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2020b), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J Vib. Control, 1077546320947302. https://doi.org/10.1177/1077546320947302.   DOI
33 Lyashenko, I.A., Borysiuk, V.N. and Popov, V.L. (2020), "Dynamical model of the asymmetric actuator of directional motion based on power-law graded materials", Mech. Eng., 245-254. https://doi.org/10.22190/FUME200129020L.   DOI
34 Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68(1-3), 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2.   DOI
35 She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.   DOI
36 Tapia, G., Elwany, A.H. and Sang, H. (2016), "Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models", Addit. Manuf., 12, 282-290. https://doi.org/10.1016/j.addma.2016.05.009.   DOI
37 Fan, F., Cai, X., Sahmani, S. and Safaei, B. (2021), "Isogeometric thermal postbuckling analysis of porous FGM quasi-3D nanoplates having cutouts with different shapes based upon surface stress elasticity", Compos. Struct., 262, 113604. https://doi.org/10.1016/j.compstruct.2021.113604.   DOI
38 Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., 8(4), 283-292. https://doi.org/10.12989/anr.2020.8.4.283.   DOI
39 Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. https://doi.org/10.12989/scs.2020.36.3.293.   DOI
40 She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027.   DOI
41 Soliman, A.E., Eltaher, M.A., Attia, M.A. and Alshorbagy, A.E. (2018), "Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility", Struct. Eng. Mech., 66(1), 85-96. http://dx.doi.org/10.12989/sem.2018.66.1.085.   DOI
42 Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007.   DOI
43 Dong, Y.H., He, L.W., Wang, L., Li, Y.H. and Yang, J. (2018), "Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: an analytical study", Aerosp. Sci. Technol., 82, 466-478. https://doi.org/10.1016/j.ast.2018.09.037.   DOI
44 Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.   DOI
45 Mindlin, R.D, (1963), "Influence of couple-stresses on stress concentrations", Experimental Mechanics, 3, 1-7.   DOI
46 Mohammadimehr, M. and Meskini, M. (2020), "Analysis of porous micro sandwich plate: Free and forced vibration under magneto-electro-elastic loadings", Adv. Nano Res., 8(1), 69-82. https://doi.org/10.12989/anr.2020.8.1.069.   DOI
47 Moory-Shirbani, M., Sedighi, H.M., Ouakad, H.M. and Najar, F. (2018), "Experimental and mathematical analysis of a piezoelectrically actuated multilayered imperfect microbeam subjected to applied electric potential", Compos. Struct., 184, 950-960. https://doi.org/10.1016/j.compstruct.2017.10.062.   DOI
48 Sahmani, S. and Madyira, D.M. (2019), "Nonlocal strain gradient nonlinear primary resonance of micro/nano-beams made of GPL reinforced FG porous nanocomposite materials", Mech. Based Des. Struct., 1-28. https://doi.org/10.1080/15397734.2019.1695627   DOI
49 Sedighi, H.M. and Daneshmand, F. (2014), "Static and dynamic pull-in instability of multi-walled carbon nanotube probes by He's iteration perturbation method", J. Mech. Sci. Technol., 28(9), 3459-3469. https://doi.org/10.1007/s12206-014-0807-x.   DOI
50 Sedighi, H.M., Abouelregal, A.E. and Faghidian, S.A. (2021), "Modified couple stress flexure mechanics of nanobeams", Physica Scripta, 96(11), 115402. https://doi.org/10.1088/1402-4896/ac13e2.   DOI
51 Abo-Bakr, R.M., Eltaher, M.A. and Attia, M.A. (2020a), "Pull-in and freestanding instability of actuated functionally graded nanobeams including surface and stiffening effects", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-020-01146-0.   DOI
52 Abo-Bakr, H.M., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020b), "Weight optimization of axially functionally graded microbeams under buckling and vibration behaviors", Mech. Based Des. Struct., 1-22. https://doi.org/10.1080/15397734.2020.1838298.   DOI
53 Lu, L., Wang, S., Li, M. and Guo, X. (2021b), "Free vibration and dynamic stability of functionally graded composite microtubes reinforced with graphene platelets", Compos. Struct., 272, 114231. https://doi.org/10.1016/j.compstruct.2021.114231.   DOI
54 Le, N.L., Nguyen, T.P., Vu, H.N., Nguyen, T.T. and Vu, M.D. (2020), "An analytical approach of nonlinear thermomechanical buckling of functionally graded graphene-reinforced composite laminated cylindrical shells under compressive axial load surrounded by elastic foundation", J. Appl. Comput. Mech., 6(2), 357-372. https://doi.org/10.22055/JACM.2019.29527.1609.   DOI
55 Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.   DOI
56 Ebrahimi, F. and Dabbagh, A. (2019), "A novel porosity-based homogenization scheme for propagation of waves in axially-excited FG nanobeams", Adv. Nano Res., 7(6), 379-390. https://doi.org/10.12989/anr.2019.7.6.379.   DOI
57 Shariati, A., Mohammad-Sedighi, H., Zur, K.K., Habibi, M. and Safa, M. (2020), "Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters", Symmetry, 12(4), 586. https://doi.org/10.3390/sym12040586.   DOI
58 Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013.   DOI
59 Ebrahimi, F., Seyfi, A., Nouraei, M. and Haghi, P. (2021), "Influence of magnetic field on the wave propagation response of functionally graded (FG) beam lying on elastic foundation in thermal environment", Wave. Random Complex, 1-19. https://doi.org/10.1080/17455030.2020.1847359.   DOI
60 Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.   DOI
61 Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109.   DOI
62 Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.   DOI
63 Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2021a), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Based Des. Struct., 1-25. https://doi.org/10.1080/15397734.2021.1904255.   DOI
64 Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021b), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-021-01389-5.   DOI
65 Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021b), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27(4), 679-689. https://doi.org/10.12989/sss.2021.27.4.679.   DOI
66 Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.   DOI
67 Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R. and Tounsi, A. "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete, 26(1), 63-74. http://doi.org/10.12989/cac.2020.26.1.063.   DOI
68 Abo-Bakr, R.M., Abo-Bakr, H.M., Mohamed, SA. and Eltaher, M.A. (2021a), "Optimal weight for buckling of FG beam under variable axial load using Pareto optimality", Compos. Struct., 258, 113193. https://doi.org/10.1016/j.compstruct.2020.113193.   DOI
69 Abo-bakr, H.M., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2021b), "Multi-objective shape optimization for axially functionally graded microbeams", Compos. Struct., 258, 113370. https://doi.org/10.1016/j.compstruct.2020.113370.   DOI
70 Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R. and Tornabene, F. (2021b), "Buckling Analysis of CNTRC Curved Sandwich Nanobeams in Thermal Environment", Appl. Sci., 11(7), 3250. https://doi.org/10.3390/app11073250.   DOI
71 Farajpour, A., Rastgoo, A. and Mohammadi, M. (2014), "Surface effects on the mechanical characteristics of microtubule networks in living cells", Mech. Res. Commun., 57, 18-26. http://doi.org/10.1016/j.mechrescom.2014.01.005.   DOI
72 Attia, M.A. and Mohamed, S.A. (2020), "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Eng. Comput., 1-30. https://doi.org/10.1007/s00366-020-01080-1.   DOI
73 Ebrahimi, F., Daman, M. and Mahesh, V. (2019), "Thermomechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory", Adv. Nano Res., 7(4), 249-263. https://doi.org/10.12989/anr.2019.7.4.249.   DOI
74 Fattahi, A.M., Sahmani, S. and Ahmed, N.A. (2020), "Nonlocal strain gradient beam model for nonlinear secondary resonance analysis of functionally graded porous micro/nano-beams under periodic hard excitations", Mech. Based Des. Struct., 48(4), 403-432. https://doi.org/10.1080/15397734.2019.1624176.   DOI
75 Xu, X., Karami, B. and Shahsavari, D. (2021), "Time-dependent behavior of porous curved nanobeam", Int. J. Eng. Sci., 160, 103455. https://doi.org/10.1016/j.ijengsci.2021.103455.   DOI
76 Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Braz. Soc. Mech. Sci. Eng., 40(3), 1-10. https://doi.org/10.1007/s40430-018-1065-0.   DOI
77 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.   DOI
78 Esen, I., O zarpa, C. and Eltaher, M.A. (2021c), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552.   DOI
79 Aria, A.I., Rabczuk, T. and Friswell, M.I. (2019), "A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams", Eur. J. Mech. A. Solids, 77, 103767. https://doi.org/10.1016/j.euromechsol.2019.04.002.   DOI
80 Aria, A.I. and Friswell, M.I. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071.   DOI
81 Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011   DOI
82 Attia, M.A. and Rahman, A.A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005.   DOI
83 Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., 5(4), 393. https://doi.org/10.12989/anr.2017.5.4.393.   DOI
84 Bashiri, A.H., Akbas, S.D., Abdelrahman, A.A., Assie, A., Eltaher, M.A. and Mohamed, E.F. (2021), "Vibration of multilayered functionally graded deep beams under thermal load", Geomech. Eng., 24(6), 545-557. https://doi.org/10.12989/gae.2021.24.6.545.   DOI
85 Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. Part B Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020.   DOI
86 Alipour, M.M. and Shariyat, M. (2019), "Nonlocal zigzag analytical solution for Laplacian hygrothermal stress analysis of annular sandwich macro/nanoplates with poor adhesions and 2D-FGM porous cores", Arch. Civil Mech. Eng., 19(4), 1211-1234. https://doi.org/10.1016/j.acme.2019.06.008.   DOI
87 Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.   DOI
88 Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643.   DOI