Browse > Article
http://dx.doi.org/10.12989/anr.2021.10.6.559

Research on the dispersion of carbon nanotubes and their application in solution-processed polymeric matrix composites: A review  

Feng, Tao (Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology)
Liu, Neng (Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology)
Wang, Shunjie (Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology)
Qin, Can (Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology)
Shi, Shengwei (Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology)
Zeng, Xueying (Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology)
Liu, Gang (Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology)
Publication Information
Advances in nano research / v.10, no.6, 2021 , pp. 559-576 More about this Journal
Abstract
This review highlights and categorizes the approaches for preparation of CNTs dispersion and polymer/CNTs composites via solution-based strategies. Carbon nanotubes (CNTs) demonstrate unique physical and chemical properties, which allow several exciting potential applications in various fields including nanocomposites. Presently, the commercialized application of CNTs is still quite limited due to the formation of CNTs bundles, which significantly degrade the properties. Therefore, well dispersion of CNTs in nanocomposites is quite important, especially for CNTs/polymer composites, as a small amount of CNTs can improve the composite properties dramatically. This article will review the research on the dispersion of CNTs (including covalent and non-covalent functionalization) and the fabrication of CNTs/polymer composites through solution-based strategies by using the CNT dispersions. Moreover, the factors influencing the properties of CNTs/polymer composites will be discussed as well as the future outlook.
Keywords
carbon nanotubes; covalent; non-covalent; functionalization; solution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bagchi, S., Harpale, A. and Chew, H.B. (2018), "Interfacial load transfer mechanisms in carbon nanotube-polymer nanocomposites", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2216), 20170705. http://doi.org/10.1098/rspa.2017.0705.   DOI
2 Berber, S., Kwon, Y.K. and Tomanek, D. (2000), "Unusually high thermal conductivity of carbon nanotubes", Phys. Rev. Lett., 84(20), 4613-4616. https://doi.org/10.1103/PhysRevLett.84.4613.   DOI
3 Tsang, S.C., Chen, Y.K., Harris, P.J.F. and Green, M.L.H. (1994), "A simple chemical method of opening and filling carbon nanotubes", Nature, 372(6502), 159-162. https://doi.org/10.1038/372159a0.   DOI
4 Moradi, M.A., Angoitia, K.L., Berkel, S.V., Gnanasekaran, K., Friedrich, H., Heuts, J.P.A., Schoot, P. and Herk, A.M. (2015), "Bimodal latex effect on spin-coated thin conductive polymer-single-walled carbon nanotube layers", Langmuir, 31(44), 11982-11988. https://doi.org/10.1021/acs.langmuir.5b02756.   DOI
5 Nallabothula, H., Bhattacharjee, Y., Samantara, L. and Bose, S. (2019), "Processing-dediated different states of dispersion of multiwalled carbon nanotubes in PDMS nanocomposites influence EMI shielding performance", ACS Omega, 4(1), 1781-1790. https://doi.org/10.1021/acsomega.8b02920.   DOI
6 Nayak, S., Bhattacharjee, S. and Singh, B.P. (2012), "Preparation of transparent and conducting carbon nanotube/Nhydroxymethyl acrylamide composite thin films by in situ polymerization", Carbon, 50(11), 4269-4276. https://doi.org/10.1016/j.carbon.2012.05.010.   DOI
7 Noor, M.M., Goswami, J. and Davis, V.A. (2020), "Comparison of attachment and antibacterial activity of covalent and noncovalent lysozyme-functionalized single-walled carbon nanotubes", ACS Omega, 5(5), 2254-2259. https://doi.org/10.1021/acsomega.9b03387.   DOI
8 O'Connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Hauge, R.H. and Weisman, R.B. (2002), "Band gap fluorescence from individual single-walled carbon nanotubes", Science, 297(5581), 593-596. http://doi.org/10.1126/science.1072631.   DOI
9 Prato, M., Kostarelos, K. and Bianco, A. (2008), "Functionalized carbon nanotubes in drug design and discovery", Accounts. Chem. Res., 41(1), 60-68. https://doi.org/10.1021/ar700089b.   DOI
10 Kalinina, I., Worsley, K., Lugo, C., Mandal, S., Bekyarova, E. and Haddon, R.C. (2011), "Synthesis, dispersion, and viscosity of poly (ethylene glycol)-functionalized water-soluble single-walled carbon nanotubes", Chem. Mater., 23(5), 1246-1253. http://doi.org/10.1021/cm103030s.   DOI
11 Georgakilas, V., Bourlinos, A., Gournis, D., Tsoufis, T., Trapalis, C., Mateo-Alonso, A. and Prato, M. (2008), "Multipurpose organically modified carbon nanotubes: From functionalization to nanotube composites", J. Am. Chem. Soc., 130(27), 8733-8740. https://doi.org/10.1021/ja8002952.   DOI
12 Premkumar, T., Mezzenga, R. and Geckeler, K.E. (2012), "Carbon nanotubes in the liquid phase: Addressing the issue of dispersion", Small, 8(9), 1299-1313. http://doi.org/10.1002/smll.201101786.   DOI
13 Rao, A.M., Richter, E., Bandow, S., Chase, B., Eklund, P.C., Williams, K.A., Fang, S., Subbaswamy, K.R., Menon, M., Thess, A., Smalley, R.E., Dresselhaus, G. and Dresselhaus, M.S. (1997), "Diameter-selective Raman scattering from vibrational modes in carbon nanotubes", Science, 275(5297), 187-191. https://doi.org/10.1126/science.275.5297.187.   DOI
14 Mun, S.J., Jung, Y.M., Kim, J.C. and Chang, J.H. (2008), "Poly(ethylene terephthalate) nanocomposite fibers with functionalized multiwalled carbon nanotubes via in-situ polymerization", J. Appl. Polym. Sci., 109(1), 638-646. https://doi.org/10.1002/app.28164.   DOI
15 Liang, L., Gao, C., Chen, G. and Guo, C.Y. (2016), "Large-area, stretchable, super flexible and mechanically stable thermoelectric films of polymer/carbon nanotube composites", J. Mater. Chem. C, 4(3), 526-532. http://doi.org/10.1039/C5TC03768A.   DOI
16 McGinnis, R.L., Reimund, K., Ren, J., Xia, L., Chowdhury, M.R., Sun, X., Abril, M., Moon, J.D., Merrick, M.M., Park, J., Stevens, K.A., McCutcheon, J.R. and Freeman, B.D. (2018), "Large-scale polymeric carbon nanotube membranes with sub-1.27-nm pores", Sci. Adv., 4(3), e1700938. http://doi.org/10.1126/sciadv.1700938.   DOI
17 Xie, N., Jiao, Q.J., Zang, C.G., Wang, C.L. and Liu, Y.Y. (2010), "Study on dispersion and electrical property of multi-walled carbon nanotubes/low-density polyethylene nanocomposites", Mater. Design, 31(4), 1676-1683. http://doi.org/10.1016/j.matdes.2009.02.032.   DOI
18 Grossiord, N., Loos, J. and Koning, C.E. (2005), "Strategies for dispersing carbon nanotubes in highly viscous polymers", J. Mater. Chem., 15(24), 2349-2352. http://doi.org/10.1039/B501805F.   DOI
19 Gulotty, R., Castellino, M., Jagdale, P., Tagliaferro, A. and Balandin, A.A. (2013), "Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotubepolymer nanocomposites", ACS Nano, 7(6), 5114-5121. http://doi.org/10.1021/nn400726g.   DOI
20 Hazani, M., Naaman, R., Hennrich, F. and Kappes, M.M. (2003), "Confocal fluorescence imaging of DNA-functionalized carbon nanotubes", Nano Lett., 3(2), 153-155. https://doi.org/10.1021/nl025874t.   DOI
21 Hirano, A., Maeda, Y., Akasaka, T. and Shiraki, K. (2009), "Synergistically enhanced dispersion of native protein-carbon nanotube conjugates by fluoroalcohols in aqueous solution", Chem-Eur. J., 15(38), 9905-9910. http://doi.org/10.1002/chem.200901053.   DOI
22 Bai, Y., Zhang, R., Ye, X., Zhu, Z., Xie, H., Shen, B., Cai, D., Liu, B., Zhang, C., Jia, Z., Zhang, S., Li, X. and Wei, F. (2018), "Carbon nanotube bundles with tensile strength over 80 GPa", Nat. Nanotechnol., 13(7), 589-595. https://doi.org/10.1038/s41565-018-0141-z.   DOI
23 Chen, J., Yan, L., Song, W. and Xu, D. (2018), "Interfacial characteristics of carbon nanotube-polymer composites: a review", Compos. Part A-Appl. S., 114, 149-169. https://doi.org/10.1016/j.compositesa.2018.08.021.   DOI
24 Liang, L., Xie, W., Fang, S., He, F., Yin, B., Tlili, C., Wang, D., Qiu, S and Li, Q. (2017), "High-efficiency dispersion and sorting of single-walled carbon nanotubes via non-covalent interactions", J. Mater. Chem. C, 5(44), 11339-11368. http://doi.org/10.1039/C7TC04390B.   DOI
25 Liu, G., Rahman, A.F.M.M., Chaunchaiyakul, S., Kimura, T., Kuwahara, Y. and Komatsu, N. (2013a), "Bis(tert-butylpyrene) Nanotweezers and Nanocalipers: Enhanced Extraction and Recognition Abilities for Single-Walled Carbon Nanotubes", Chem-Eur. J., 19(48), 16221-16230. http://doi.org/10.1002/chem.201302799.   DOI
26 Chen, J. and Han, J. (2020), "Effect of hydroxylated carbon nanotubes on the thermal and electrical properties of derived epoxy composite materials", Results Phys., 18(2020), 103246. https://doi.org/10.1016/j.rinp.2020.103246.   DOI
27 De Volder, M.F.L., Tawfick, S.H., Baughman, R.H. and Hart, A.J. (2013), "Carbon nanotubes: Present and future commercial applications", Science, 339(6119), 535-539. https://doi.org/10.1126/science.1222453.   DOI
28 Du, F.P., Ye, E.Z., Yang, W., Shen, T.H., Tang, C.Y., Xie, X.L., Zhou, X.P. and Law, W.C. (2015), "Electroactive shape memory polymer based on optimized multi-walled carbon nanotubes/polyvinyl alcohol nanocomposites", Compos. Part B-Eng., 68, 170-175. https://doi.org/10.1016/j.compositesb.2014.08.043.   DOI
29 Georgakilas, V., Kordatos, K., Prato, M., Guldi, D.M., Holzinger, M. and Hirsch, A. (2002a), "Organic functionalization of carbon nanotubes", J. Am. Chem. Soc., 124(5), 760-761. http://doi.org/10.1021/ja016954m.   DOI
30 Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C. and Haddon, R.C. (1998), "Solution Properties of Single-Walled Carbon Nanotubes", Science, 282(5386), 95-98. https://doi.org/10.1126/science.282.5386.95.   DOI
31 Yazdani, H., Smith, B.E. and Hatami, K. (2016), "Multi-walled carbon nanotube-filled polyvinyl chloride composites: Influence of processing method on dispersion quality, electrical conductivity and mechanical properties", Compos. Part A-Appl. S., 82, 65-77. https://doi.org/10.1016/j.compositesa.2015.12.005.   DOI
32 Liu, G., Miyake, Y. and Komatsu, N. (2017), "Nanocalipers as novel molecular scaffolds for carbon nanotubes", Org. Chem. Front., 4(5), 911-919. http://doi.org/10.1039/C7QO00158D.   DOI
33 Liu, M., Younes, H., Hong, H. and Peterson, G.P. (2019b), "Polymer nanocomposites with improved mechanical and thermal properties by magnetically aligned carbon nanotubes", Polymer, 166, 81-87. https://doi.org/10.1016/j.polymer.2019.01.031.   DOI
34 Zhu, J., Kim, J., Peng, H., Margrave, J.L., Khabashesku, V.N. and Barrera, E.V. (2003), "Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization", Nano Lett., 3(8), 1107-1113. http://doi.org/10.1021/nl0342489.   DOI
35 Singh, I., Verma, A., Kaur, I., Bharadwaj, L.M., Bhatia, V., Jain, V.K., Bhatia, C.S., Bhatnagar, P.K. and Mathur, P.C. (2010), "The effect of length of single-walled carbon nanotubes (SWNTs) on electrical properties of conducting polymer-SWNT composites", J. Polym. Sci. Pol. Phys., 48(1), 89-95. https:// doi.org/10.1002/polb.21847.   DOI
36 Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H., Smalley, R.E., Schmidt, J. and Talmon, Y. (2003), "Individually suspended single-walled carbon nanotubes in various surfactants", Nano Lett., 3(10), 1379-1382. http://doi.org/10.1021/nl034524j.   DOI
37 Nakashima, N., Okuzono, S., Murakami, H., Nakai, T. and Yoshikawa, K. (2003), "DNA Dissolves Single-walled Carbon Nanotubes in Water", Chem. Lett., 32(5), 456-457. https://doi.org/10.1246/cl.2003.456.   DOI
38 Nish, A., Hwang, J.Y., Doig, J. and Nicholas, R.J. (2007), "Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers", Nat. Nanotechnol., 2(10), 640-646. http://doi.org/10.1038/nnano.2007.290.   DOI
39 Greenfeld, I. and Wagner, H.D. (2015), "Nanocomposite toughness, strength and stiffness: Role of filler geometry", Nanocomposites, 1(1), 3-17. https://doi.org/10.1179/2055033214Y.0000000002.   DOI
40 Wang, H., Yi, S., Pu, X. and Yu, C. (2015), "Simultaneously improving electrical conductivity and thermopower of polyaniline composites by utilizing carbon nanotubes as high mobility conduits", ACS Appl. Mater. Interf., 7(18), 9589-9597. https://doi.org/10.1021/acsami.5b01149.   DOI
41 Wang, L., Pan, C., Chen, Z., Zhou, W., Gao, C. and Wang, L. (2018), "Enhanced thermoelectric performance of conjugated polymer/single-walled carbon nanotube composites with strong stacking", ACS Appl. Energ. Mater., 1(9), 5075-5082. https://doi.org/10.1021/acsaem.8b01126.   DOI
42 Wojtera, K., Walczak, M., Pietrzak, L., Fraczyk, J., Szymanski, L. and Sobczyk-Guzenda, A. (2020), "Synthesis of functionalized carbon nanotubes for fluorescent biosensors", Nanotechnol. Rev., 9, 1237-1244. https://doi.org/10.1515/ntrev-2020-0096.   DOI
43 Kong, K.T.S., Mariatti, M., Rashid, A.A. and Busfield, J.J.C. (2012), "Effect of processing methods and functional groups on the properties of multi-walled carbon nanotube filled poly (dimethyl siloxane) composites", Polym. Bull., 69(8), 937-953. http://doi.org/10.1007/s00289-012-0777-z.   DOI
44 He, P., Shimano, S., Salikolimi, K., Isoshima, T., Kakefuda, Y., Mori, T., Taguchi, Y., Ito, Y. and Kawamoto, M. (2019), "Noncovalent modification of single-walled carbon nanotubes using thermally cleavable polythiophenes for solution-processed thermoelectric films", ACS Appl. Mater. Interf., 11(4), 4211-4218. https://doi.org/10.1021/acsami.8b14820.   DOI
45 Holzinger, M., Vostrowsky, O., Hirsch, A., Hennrich, F., Kappes, M., Weiss, R. and Jellen, F. (2001), "Sidewall functionalization of carbon nanotubes", Angew. Chem. Int. Edit., 40(21), 4002-4005. https://doi.org/10.1002/1521-3773(20011105)40:21<4002::aid-anie4002>3.0.co;2-8.   DOI
46 Jia, Z., Wang, Z., Xu, C., Liang, J., Wei, B., Wu, D. and Zhu, S. (1999), "Study on poly (methyl methacrylate)/carbon nanotube composites", Mater. Sci. Eng. A, 271(1), 395-400. https://doi.org/10.1016/S0921-5093(99)00263-4.   DOI
47 Kam, N.W.S., Jessop, T.C., Wender, P.A. and Dai, H. (2004), "Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells", J. Am. Chem. Soc., 126(22), 6850-6851. https://doi.org/10.1021/ja0486059.   DOI
48 Pompeo, F. and Resasco, D.E. (2002), "Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine", Nano Lett., 2(4), 369-373. http://doi.org/10.1021/nl015680y.   DOI
49 Qu, S., Yao, Q., Wang, L., Hua, J. and Chen, L. (2018), "A novel hydrophilic pyridinium salt polymer/SWCNTs composite film for high thermoelectric performance", Polymer, 136, 149-156. https://doi.org/10.1016/j.polymer.2017.12.048.   DOI
50 Zhang, F., Feng, Y., Qin, M., Gao, L., Li, Z., Zhao, F., Zhang, Z., Lv, F. and Feng, W. (2019), "Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite", Adv. Funct. Mater., 29(25), 1901383. https://doi.org/10.1002/adfm.201901383.   DOI
51 Wenseleers, W., Vlasov, I.I., Goovaerts, E., Obraztsova, E.D., Lobach, A.S. and Bouwen, A. (2004), "Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles", Adv. Funct. Mater., 14(11), 1105-1112. http://doi.org/10.1002/adfm.200400130.   DOI
52 Li, Y., Wei, H., Li, L., Wang, J., Qian, X., He, L., Wang, X., Ouyang, Q., Chen, Y., Zhang, Y. and Li, Y. (2018), "Highefficiency surfactant prepared from phenolic resin for multiwalled carbon nanotube aqueous suspension", J. Nanopart. Res., 20, 162. https://doi.org/10.1007/s11051-018-4264-9.   DOI
53 Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P. J., Lu, A. Iverson, T., Shelimov, K., Huffman, C.B., Rodriguez-Macias, F., Shon, Y.S., Lee, T.R., Colbert, D.T. and Smalley, R. E. (1998), "Fullerene pipes", Science, 280(5367), 1253-1256. http://doi.org/10.1126/science.280.5367.1253.   DOI
54 Liu, G., Wang, F., Chaunchaiyakul, S., Saito, Y., Bauri, A.K., Kimura, T., Kuwahara, Y. and Komatsu, N. (2013b), "Simultaneous discrimination of diameter, handedness, and metallicity of single-walled carbon nanotubes with chiral diporphyrin nanocalipers", J. Am. Chem. Soc., 135(12), 4805-4814. http://doi.org/10.1021/ja312519s.   DOI
55 Zhou, D., Zhang, Y., Zhu, J., Yu, J., Wang, Y. and Hu, Z. (2019), "Tailoring the architecture of aromatic polymers for highly efficient dispersion of carbon nanomaterials and their high-performance composites", Carbon, 148, 297-306. https://doi.org/10.1016/j.carbon.2019.03.089.   DOI
56 Yuan, W., Che, J. and Chan-Park, M.B. (2011), "A novel polyimide dispersing matrix for highly electrically conductive solution-cast carbon nanotube-based composite", Chem. Mater., 23(18), 4149-4157. https://doi.org/10.1021/cm200909x.   DOI
57 Georgakilas, V., Tagmatarchis, N., Pantarotto, D., Bianco, A., Briand, J.P. and Prato, M. (2002b), "Amino acid functionalisation of water soluble carbon nanotubes", Chem. Commun., (24), 3050-3051. http://doi.org/10.1039/B209843A.   DOI
58 Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B. and Schulte, K. (2004), "Carbon nanotube-reinforced epoxycomposites: enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64(15), 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002.   DOI
59 Grossiord, N., Kivit, P.J.J., Loos, J., Meuldijk, J., Kyrylyuk, A.V., van der Schoot, P. and Koning, C.E. (2008), "On the influence of the processing conditions on the performance of electrically conductive carbon nanotube/polymer nanocomposites", Polymer, 49(12), 2866-2872. http://doi.org/10.1016/j.polymer.2008.04.033.   DOI
60 Grossiord, N., Wouters, M.E.L., Miltner, H.E., Lu, K.B., Loos, J., Mele, B.V. and Koning, C.E. (2010), "Isotactic polypropylene/carbon nanotube composites prepared by latex technology: Electrical conductivity study", Eur. Polym. J., 46(9), 1833-1843. http://doi.org/10.1016/j.eurpolymj.2010.06.009.   DOI
61 Liu, G., Liu, N., Lopez-Moreno, A., Zhao, P., Dai, W., Shi, S. and Komatsu, N. (2018), "Efficient production of single-walled carbon nanotube aqueous dispersion using hexahydroxy-triphenylene as a dispersant and stabilizer", Chem. Select, 3(22), 6081-6086. https:// doi.org/10.1002/slct.201800473.   DOI
62 Luo, S.-X.L., Lin, C.-J., Ku, K.H., Yoshinaga, K. and Swager, T.M. (2020), "Pentiptycene polymer/single-walled carbon nanotube complexes: Applications in benzene, toluene, and o-xylene detection", ACS Nano, 14(6), 7297-7307. https://doi.org/10.1021/acsnano.0c02570.   DOI
63 Ma, P.C., Kim, J.K. and Tang, B.Z. (2007), "Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites", Compos. Sci. Technol., 67(14), 2965-2972. https://doi.org/10.1016/j.compscitech.2007.05.006.   DOI
64 Wu, T.M. and Chen, E.C. (2008), "Preparation and characterization of conductive carbon nanotube-polystyrene nanocomposites using latex technology", Compos. Sci. Technol., 68(10-11), 2254-2259. http://doi.org/10.1016/j.compscitech.2008.04.010.   DOI
65 Faraguna, F., Potschke, P. and Pionteck, J. (2017), "Preparation of polystyrene nanocomposites with functionalized carbon nanotubes by melt and solution mixing: Investigation of dispersion, melt rheology, electrical and thermal properties", Polymer, 132, 325-341. https://doi.org/10.1016/j.polymer.2017.11.014.   DOI
66 Allen, R., Pan, L., Fuller, G.G. and Bao, Z. (2014), "Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers", ACS Appl. Mater. Interf., 6(13), 9966-9974. https://doi.org/10.1021/am5019995.   DOI
67 Backes, C., Schmidt, C.D., Hauke, F., Bottcher, C. and Hirsch, A. (2009), "High Population of Individualized SWCNTs through the Adsorption of Water-Soluble Perylenes", J. Am. Chem. Soc., 131(6), 2172-2184. http://doi.org/10.1021/ja805660b.   DOI
68 Backes, C., Schmidt, C.D., Hauke, F. and Hirsch, A. (2011), "Perylene-based nanotweezers: Enrichment of larger-diameter single-walled carbon nanotubes", Chem-Asian. J., 6(2), 438-444. http://doi.org/10.1002/asia.201000647.   DOI
69 Hamon, M.A., Chen, J., Hu, H., Chen, Y., Itkis, M.E., Rao, A.M., Eklund, P.C. and Haddon, R.C. (1999), "Dissolution of singlewalled carbon nanotubes", Adv. Mater., 11(10), 834-840. http://doi.org/10.1002/(sici)1521-4095(199907)11:10<834::aid-adma834>3.0.co;2-r.   DOI
70 Lin, Y., Zhou, B., Shiral Fernando, K.A., Liu, P., Allard, L.F. and Sun, Y.P. (2003), "Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer", Macromolecules, 36(19), 7199-7204. https://doi.org/10.1021/ma0348876.   DOI
71 Xing, W., Yang, W., Yang, W., Hu, Q., Si, J., Lu, H., Yang, B., Song, L., Hu, Y. and Yuen, R.K.K. (2016), "Functionalized carbon nanotubes with phosphorus- and nitrogen-containing agents: Effective reinforcer for thermal, mechanical, and flame-retardant properties of polystyrene nanocomposites", ACS Appl. Mater. Interf., 8(39), 26266-26274. https://doi.org/10.1021/acsami.6b06864.   DOI
72 Yao, Q., Chen, L., Zhang, W., Liufu, S. and Chen, X. (2010), "Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites", ACS Nano, 4(4), 2445-2451. https://doi.org/10.1021/nn1002562.   DOI
73 Liu, G., Saito, Y., Nishio-Hamane, D., Bauri, A.K., Flahaut, E., Kimura, T. and Komatsu, N. (2014), "Structural discrimination of double-walled carbon nanotubes by chiral diporphyrin nanocalipers", J. Mater. Chem. A, 2(44), 19067-19074. http://doi.org/10.1039/C4TA04407J.   DOI
74 Song, S., Li, Q., Zhang, C., Liu, Z., Fan, X. and Zhang, Y. (2021), "Balanced strength-toughness, thermal conductivity and selfcleaning properties of PMMA composites enabled by terpolymer grafted carbon nanotube", Nanotechnology, 32(2021), 195709. http://dx.doi.org/10.1088/1361-6528/abe2ca.   DOI
75 Sui, G., Liu, D., Liu, Y., Ji, W., Zhang, Q. and Fu, Q. (2019), "The dispersion of CNT in TPU matrix with different preparation methods: solution mixing vs melt mixing", Polymer, 182, 121838. https://doi.org/10.1016/j.polymer.2019.121838.   DOI
76 Wan, H., Delale, F. and Shen, L. (2005), "Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites", Mech. Res. Commun., 32(5), 481-489. https://doi.org/10.1016/j.mechrescom.2004.10.011.   DOI
77 Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F. and Ruoff, R.S. (2000b), "Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load", Science, 287(5453), 637-640. https://doi.org/10.1126/science.287.5453.637.   DOI
78 Antonucci, A., Kupis-Rozmyslowicz, J. and Boghossian, A.A. (2017), "Noncovalent protein and peptide functionalization of single-walled carbon nanotubes for biodelivery and optical sensing applications", ACS Appl. Mater. Interf., 9(13), 11321-11331. https://doi.org/10.1021/acsami.7b00810.   DOI
79 Liu, G., Liu, N., Zhao, P., Zeng, X., Shi, S., Qin, C., Wang, S. and Dai, W. (2019a), "Solid-phase debundling of single-walled carbon nanotubes for the "stock solid" delivery of concentrated nanotube dispersions", ACS Appl. Nano Mater., 2(3), 1720-1726. https://doi.org/10.1021/acsanm.9b00201.   DOI
80 Gupta, M.L., Sydlik, S.A., Schnorr, J.M., Woo, D.J., Osswald, S., Swager, T.M. and Raghavan, D. (2013), "The effect of mixing methods on the dispersion of carbon nanotubes during the solvent-free processing of multiwalled carbon nanotube/epoxy composites", J. Polym. Sci. Pol. Phys., 51(6), 410-420. http://doi.org/10.1002/polb.23225.   DOI
81 Zhang, W., Picu, R.C. and Koratkar, N. (2008), "The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites", Nanotechnology, 19(28). http://doi.org/10.1088/0957-4484/19/28/285709.   DOI
82 Zhang, R., Wen, Q., Qian, W., Su, D.S., Zhang, Q. and Wei, F. (2011), "Superstrong ultralong carbon nanotubes for mechanical energy storage", Adv. Mater., 23(30), 3387-3391. https://doi.org/10.1002/adma.201100344.   DOI
83 Zhao, B., Hu, H. and Haddon, R.C. (2004), "Synthesis and properties of a water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) graft copolymer", Adv. Funct. Mater., 14(1), 71-76. https://doi.org/10.1002/adfm.200304440.   DOI
84 Shahlol, O.M.A., Isawi, H., El-Malky, M.G., Al-Aassar, A.E.-H.M. and EI zwai, A. (2020), "Performance evaluation of the different nano-enhanced polysulfone membranes via membrane distillation for produced water desalination in Sert Basin-Libya", Arab. J. Chem., 13(4), 5118-5136. https://doi.org/10.1016/j.arabjc.2020.02.011.   DOI
85 Shamshoom, C., Fong, D., Li, K., Kardelis, V. and Adronov, A. (2018), "Pillar[5]arene-decorated single-walled carbon nanotubes", ACS Omega 3(10), 13935-13943. https://doi.org/10.1021/acsomega.8b02091.   DOI
86 Dai, W., Wang, J., Gan, X., Wang, H., Su, X. and Chen, X. (2020), "A systematic investigation of dispersion concentration and particle size distribution of multi-wall carbon nanotubes in aqueous solutions of various dispersants", Colloid. Surface. A., 589, 124369. https://doi.org/10.1016/j.colsurfa.2019.124369.   DOI
87 Rubio, N., Fabbro, C., Herrero, M.A., Hoz, A., Meneghetti, M., Fierro, J.L.G., Prato, M. and Vazquez, E. (2011), "Ball-milling modification of single-walled carbon nanotubes: Purification, cutting, and functionalization", Small, 7(5), 665-674. http://doi.org/10.1002/smll.201001917.   DOI
88 Mallakpour, S. and Soltanian, S. (2016), "Surface functionalization of carbon nanotubes: Fabrication and applications", RSC Adv., 6(111), 109916-109935. http://doi.org/10.1039/C6RA24522F.   DOI
89 Schneider, S., Lefebvre, J., Diercks, N.J., Berger, F.J., Lapointe, F., Schleicher, J., Malenfant, P.R.L. and Zaumseil, J. (2020), "Phenanthroline additives for enhanced semiconducting carbon nanotube dispersion stability and transistor performance", ACS Appl. Nano Mater., 3(12), 12314-12324. https://doi.org/10.1021/acsanm.0c02813.   DOI
90 Shaffer, M.S.P. and Windle, A.H. (1999), "Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites", Adv. Mater., 11(11), 937-941. https://doi.org/10.1002/(sici)1521-095(199908)11:11<937::aid-adma937>3.0.co;2-9.   DOI
91 Zheng, M., Jagota, A., Semke, E.D., Diner, B.A., McLean, R.S., Lustig, S.R., Richardson, R.E. and Tassi, N.G. (2003), "DNAassisted dispersion and separation of carbon nanotubes", Nat. Mater., 2(5), 338-342. http://doi.org/10.1038/nmat877.   DOI
92 Yu, M.F., Files, B.S., Arepalli, S. and Ruoff, R.S. (2000a), "Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties", Phys. Rev. Lett., 84(24), 5552-5555. https://doi.org/10.1103/PhysRevLett.84.5552.   DOI
93 Song, P., Song, J. and Zhang, Y. (2020), "Stretchable conductor based on carbon nanotube/carbon black silicone rubber nanocomposites with highly mechanical, electrical properties and strain sensitivity", Compos. Part B-Eng., 191, 107979. https://doi.org/10.1016/j.compositesb.2020.107979.   DOI
94 Singh, P., Campidelli, S., Giordani, S., Bonifazi, D., Bianco, A. and Prato, M. (2009), "Organic functionalisation and characterisation of single-walled carbon nanotubes", Chem. Soc. Rev., 38(8), 2214-2230. http://doi.org/10.1039/B518111A.   DOI
95 Holzinger, M., Abraham, J., Whelan, P., Graupner, R., Ley, L., Hennrich, F., Kappes, M. and Hirsch, A. (2003), "Functionalization of single-walled carbon nanotubes with (R-) oxycarbonyl nitrenes", J. Am. Chem. Soc., 125(28), 8566-8580. https://doi.org/10.1021/ja029931w.   DOI
96 Hou, J., Du, W., Meng, F., Zhao, C. and Du, X. (2018), "Effective dispersion of multi-walled carbon nanotubes in aqueous solution using an ionic-gemini dispersant", J. Colloid. Interf. Sci., 512, 750-757. https://doi.org/10.1016/j.jcis.2017.10.109.   DOI
97 Ma, P.C., Mo, S.Y., Tang, B.Z. and Kim, J.K. (2010), "Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites", Carbon, 48(6), 1824-1834. https://doi.org/10.1016/j.carbon.2010.01.028.   DOI
98 Martone, A., Faiella, G., Antonucci, V., Giordano, M. and Zarrelli, M. (2011), "The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix", Compos. Sci. Technol., 71(8), 1117-1123. http://doi.org/10.1016/j.compscitech.2011.04.002.   DOI
99 Menezes, B.R.C., Ferreira, F.V., Silva, B.C., Simonetti, E.A.N., Bastos, T.M., Cividanes, L.S. and Thim, G.P. (2018), "Effects of octadecylamine functionalization of carbon nanotubes on dispersion, polarity, and mechanical properties of CNT/HDPE nanocomposites", J. Mater. Sci., 53(20), 14311-14327. https://doi.org/10.1007/s10853-018-2627-3.   DOI
100 Mirka, B., Fong, D., Rice, N.A., Melville, O.A., Adronov, A. and Lessard, B.H. (2019), "Polyfluorene-sorted semiconducting single-walled carbon nanotubes for applications in thin-film transistors", Chem. Mater., 31(8), 2863-2872. https://doi.org/10.1021/acs.chemmater.8b05357.   DOI
101 Jin, L., Bower, C. and Zhou, O. (1998), "Alignment of carbon nanotubes in a polymer matrix by mechanical stretching", Appl. Phys. Lett., 73(9), 1197-1199. https://doi.org/10.1063/1.122125.   DOI
102 Karousis, N., Ichihashi, T., Yudasaka, M., Iijima, S. and Tagmatarchis, N. (2011), "Microwave-assisted functionalization of carbon nanohorns via [2+1] nitrenes cycloaddition", Chem. Commun., 47(5), 1604-1606. http://doi.org/10.1039/C0CC03101A.   DOI
103 Kim, D., Lee, T., Kwon, M., Paik, H.-j., Han, J.H., Kang, M., Choi, J., Hong, S. and Kim, Y.A. (2020), "Polymer wrappinginduced dispersion of single walled carbon nanotubes in ethylene glycol under mild sonication", Rsc Adv., 10, 26262-26267. http://dx.doi.org/10.1039/D0RA04061D.   DOI
104 Konnola, R. and Joseph, K. (2016), "Effect of side-wall functionalisation of multi-walled carbon nanotubes on the thermo-mechanical properties of epoxy composites", RSC Adv., 6(28), 23887-23899. http://doi.org/10.1039/C6RA00080K.   DOI
105 Li, C., Lv, X., Dai, J., Cui, J. and Yan, Y. (2013), "Synthesis of water-soluble single-walled carbon nanotubes and its application in poly (vinyl alcohol) composites", Polym. Adv. Technol., 24(4), 376-382. https://doi.org /10.1002/pat.3091.   DOI
106 Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T. and Yodh, A.G. (2003), "High weight fraction surfactant solubilization of single-wall carbon nanotubes in water", Nano Lett., 3(2), 269-273. https://doi.org/10.1021/nl025924u.   DOI
107 Samori, C., Sainz, R., Menard-Moyon, C., Toma, F.M., Venturelli, E., Singh, P., Ballestri, M., Prato, M. and Bianco, A. (2010), "Potentiometric titration as a straightforward method to assess the number of functional groups on shortened carbon nanotubes", Carbon, 48(9), 2447-2454. https://doi.org/10.1016/j.carbon.2010.03.015.   DOI
108 Das, A.K., Mukherjee, A., Baba, K., Hatada, R., Bhowmik, R. and Meikap, A.K. (2018), "Current-voltage hysteresis behavior of PVA-assisted functionalized single-walled carbon nanotube free-standing film", J. Phys. Chem. C, 122(51), 29094-29105. https://doi.org/10.1021/acs.jpcc.8b08875.   DOI
109 Tonga, M., Wei, L. and Lahti, P.M. (2020), "Enhanced thermoelectric properties of PEDOT:PSS composites by functionalized single wall carbon nanotubes", Int. J. Energ. Res., 44(11), 9149-9156. https://orcid.org/10.1002/er.5535.   DOI