Browse > Article
http://dx.doi.org/10.12989/anr.2021.10.6.549

The effect of collagen/polycaprolactone fibrous scaffold decorated with graphene nanoplatelet and low-frequency electromagnetic field on neuronal gene expression by stem cells  

Moraveji, Marzie (National Cell Bank of Iran, Pasteur Institute of Iran)
Keshvari, Hamid (Department of Biomedical Engineering, Amirkabir University of Technology)
Karkhaneh, Akbar (Department of Biomedical Engineering, Amirkabir University of Technology)
Bonakdar, Shahin (National Cell Bank of Iran, Pasteur Institute of Iran)
Hadi, Amin (Cellular and Molecular Research Center, Yasuj University of Medical Sciences)
Haghighipour, Nooshin (National Cell Bank of Iran, Pasteur Institute of Iran)
Publication Information
Advances in nano research / v.10, no.6, 2021 , pp. 549-557 More about this Journal
Abstract
This study aimed to develop a collagen/polycaprolactone (CP) fibrous scaffold decorated with Graphene (Gr) nanoplatelets (Gr-CP). In previous studies, accessibility of cells to the surface of Gr nanoplatelet was missed. Nanofibers were prepared by electrospinning which sprayed Gr nanoplatelets (1 wt.%) to synthesize the Gr-CP scaffold. Fourier transform infrared spectroscopy (FTIR) was utilized for investigation of chemical structure. Tensile tests were performed to study the influence of Gr on the mechanical properties of scaffolds. Cell differentiation was analyzed based on MAP2 and TUJ1 expression levels using real-time PCR technique in 6 groups. The variables examined in this experiment was the neural differentiating chemical medium, low-frequency electromagnetic field (LFEMF; 50Hz, 1mT) and Gr. Based on the results, Young's modulus, tensile strength and work of fracture ratio of the Gr-CP were 1.68, 2.41 and 1.42 times higher than those of the CP scaffold, respectively. MTT assay outcomes were indicative of scaffold cytocompatibility. The group treated with all three factors exhibited the highest MAP2 expression level compared to other groups. Based on the obtained results, exposing stem cells to the combined treatment of Gr and LFEMF can be used as a promising method to induce neuronal differentiation.
Keywords
low-frequency electromagnetic field; graphene; nanofiber; neuron, cell differentiation; gene expression;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Capkin, M., Cakmak, S., Kurt, F.O., Gumusderelioglu, M., Sen, B.H., Turk, B.T. and Deliloglu-Gurhan, S.I. (2012), "Random/aligned electrospun PCL/PCL-collagen nanofibrous membranes: Comparison of neural differentiation of rat AdMSCs and BMSCs", Biomed. Mater., 7(4), 045013. https://doi.org/10.1088/1748-6041/7/4/045013.   DOI
2 Cheng, K. and Zou, C. (2006), "Electromagnetic field effect on separation of nucleotide sequences and unwinding of a double helix during DNA replication", Med. Hypotheses, 66(1), 148-153. https://doi.org/10.1016/j.mehy.2005.07.007.   DOI
3 Coates, J. (2000), "Interpretation of infrared spectra, a practical approach", In: Encyclopedia of analytical chemistry: applications, theory and instrumentation. https://doi.org/10.1002/9780470027318.a5606.
4 Damink, L.O., Dijkstra, P., Van Luyn, M., Van Wachem, P., Nieuwenhuis, P. and Feijen, J. (1995), "Glutaraldehyde as a crosslinking agent for collagen-based biomaterials", J. Mater. Sci.-Mater. M., 6(8), 460-472. https://doi.org/10.1007/BF00123371.   DOI
5 Festjens, N., Kalai, M., Smet, J., Meeus, A., Van Coster, R., Saelens, X. and Vandenabeele, P. (2006), "Butylated hydroxyanisole is more than a reactive oxygen species scavenger", Cell Death Differ., 13(1), 166-169. https://doi.org/10.1038/sj.cdd.4401746.   DOI
6 Gaetani, R., Ledda, M., Barile, L., Chimenti, I., De Carlo, F., Forte, E., Ionta, V.,Giuliani, L., D'Emilia, E., Frati, G., Miraldi, F., Pozzi, D., Messina, E., Grimaldi, S., Giacomello, A. and Lisi, A. (2009), "Differentiation of human adult cardiac stem cells exposed to Extremely Low Frequency Electromagnetic Fields", Cardiovasc. Res., 82(3), 411-420. https://doi.org/10.1093/cvr/cvp067.   DOI
7 Barati, A., Hadi, A., Nejad, M.Z. and Noroozi, R. (2020b), "On vibration of bi-directional functionally graded nanobeams under magnetic field", Mech. Based Des. Struct., 1-18. https://doi.org/10.1080/15397734.2020.1719507.   DOI
8 Rajzer, I., Menaszek, E., Kwiatkowski, R., Planell, J.A. and Castano, O. (2014), "Electrospun gelatin/poly (ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering", Mater. Sci. Eng. C, 44, 183-190. https://doi.org/10.1016/j.msec.2014.08.017.   DOI
9 Golafshan, N., Kharaziha, M. and Fathi, M. (2017), "Tough and conductive hybrid graphene-PVA: Alginate fibrous scaffolds for engineering neural construct", Carbon, 111, 752-763. https://doi.org/10.1016/j.carbon.2016.10.042.   DOI
10 Ginestra, P. (2019), "Manufacturing of polycaprolactone-Graphene fibers for nerve tissue engineering", J. Mech. Behav. Biomed. Mater., 100, 103387. https://doi.org/10.1016/j.jmbbm.2019.103387.   DOI
11 He, B., Yuan, X. and Jiang, D. (2014), "Molecular self-assembly guides the fabrication of peptide nanofiber scaffolds for nerve repair", RSC Adv., 4(45), 23610-23621. https://doi.org/10.1039/C4RA01826E.   DOI
12 Huo, Y., Qiu, W.-Y., Pan, Q., Yao, Y.-F., Xing, K. and Lou, M.F. (2009), "Reactive oxygen species (ROS) are essential mediators in epidermal growth factor (EGF)-stimulated corneal epithelial cell proliferation, adhesion, migration, and wound healing", Exp. Eye Res., 89(6), 876-886. https://doi.org/10.1016/j.exer.2009.07.012.   DOI
13 Kenry, L.W., Loh, K.P. and Lim, C.T. (2018), "When stem cells meet graphene: opportunities and challenges in regenerative medicine", Biomaterials, 155, 236-250. https://doi.org/10.1016/j.biomaterials.2017.10.004.   DOI
14 Lanza, R., Langer, R. and Vacanti, J.P. (2013), Principles of Tissue Engineering (4th Edition ed.), Academic press, Massachusetts, U.S.A.
15 Laurence, J.A., French, P.W., Lindner, R.A. and Mckenzie, D.R. (2000), "Biological effects of electromagnetic fields-Mechanisms for the effects of pulsed microwave radiation on protein conformation", J. Theoretic. Biol., 206(2), 291-298. https://doi.org/10.1006/jtbi.2000.2123   DOI
16 Lee, Y.-J., Jang, W., Im, H. and Sung, J.-S. (2015), "Extremely low frequency electromagnetic fields enhance neuronal differentiation of human mesenchymal stem cells on graphenebased substrates", Curr. Appl. Phys., 15, S95-S102. https://doi.org/10.1016/j.cap.2015.04.017.   DOI
17 Li, Z., Zhang, Y. and Wang, Y. (2003), "Synthesis and characterization of N-benzoyl-N'-carboxyalkyl substituted thiourea derivatives", Phosphorus Sulfur, 178(2), 293-297. https://doi.org/10.1080/10426500307952.   DOI
18 Jazayeri, M., Shokrgozar, M.A., Haghighipour, N., Bolouri, B., Mirahmadi, F. and Farokhi, M. (2016), "Effects of electromagnetic stimulation on gene expression of mesenchymal stem cells and repair of bone lesions", Cell. J. (Yakhteh), 19(1), 34. https://doi.org/10.22074%2Fcellj.2016.4870.   DOI
19 Levin, M. (2009), "Bioelectric mechanisms in regeneration: unique aspects and future perspectives", In: Seminars in Cell & Developmental Biology (Vol. 20, No. 5, pp. 543-556), Academic Press.   DOI
20 Li, W., Guo, Y., Wang, H., Shi, D., Liang, C., Ye, Z., Qing, F. and Gong, J. (2008), "Electrospun nanofibers immobilized with collagen for neural stem cells culture", J. Mater. Sci. Mater. M., 19(2), 847-854. https://doi.org/10.1007/s10856-007-3087-5.   DOI
21 Madec, F., Billaudel, B., de Sauvage, R.C., Sartor, P. and Veyret, B. (2003), "Effects of ELF and static magnetic fields on calcium oscillations in islets of Langerhans", Bioelectrochemistry, 60(1-2), 73-80. https://doi.org/10.1016/S1567-5394(03)00049-5.   DOI
22 Mohabatpour, F., Karkhaneh, A. and Sharifi, A.M. (2016), "A hydrogel/fiber composite scaffold for chondrocyte encapsulation in cartilage tissue regeneration", RSC Adv., 6(86), 83135-83145. https://doi.org/10.1039/C6RA15592H.   DOI
23 Najafzadeh, M., Adeli, M.M., Zarezadeh, E. and Hadi, A. (2020), "Torsional vibration of the porous nanotube with an arbitrary cross-section based on couple stress theory under magnetic field", Mech. Based Des. Struct., 1-15. https://doi.org/10.1080/15397734.2020.1733602.   DOI
24 Norizadeh-Abbariki, T., Mashinchian, O., Shokrgozar, M.A., Haghighipour, N., Sen, T. and Mahmoudi, M. (2014), "Superparamagnetic nanoparticles direct differentiation of embryonic stem cells into skeletal muscle cells", J. Biomater. Tissue Eng., 4(7), 579-585. https://doi.org/10.1166/jbt.2014.1205.   DOI
25 Piacentini, R., Ripoli, C., Mezzogori, D., Azzena, G.B. and Grassi, C. (2008), "Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Cav1-channel activity", J. Cell. Physiol., 215(1), 129-139. https://doi.org/10.1002/jcp.21293.   DOI
26 Ou, L., Song, B., Liang, H., Liu, J., Feng, X., Deng, B., Sun, T. and Shao, L. (2016), "Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms", Particle Fibre Toxicol., 13(1), 57. https://doi.org/10.1186/s12989-016-0168-y.   DOI
27 Park, J.-E., Seo, Y.-K., Yoon, H.-H., Kim, C.-W., Park, J.-K. and Jeon, S. (2013), "Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation", Neurochem. Int., 62(4), 418-424. https://doi.org/10.1016/j.neuint.2013.02.002.   DOI
28 Park, S.Y., Park, J., Sim, S.H., Sung, M.G., Kim, K.S., Hong, B.H. and Hong, S. (2011), "Enhanced differentiation of human neural stem cells into neurons on graphene", Adv. Mater., 23(36), https://doi.org/10.1002/adma.201101503.   DOI
29 Qin, X. and Wu, D. (2012), "Effect of different solvents on poly (caprolactone)(PCL) electrospun nonwoven membranes", J. Therm. Anal. Calorim., 107(3), 1007-1013. https://doi.org/10.1007/s10973-011-1640-4.   DOI
30 Kavand, H., Haghighipour, N., Zeynali, B., Seyedjafari, E. and Abdemami, B. (2016), "Extremely low frequency electromagnetic field in mesenchymal stem cells gene regulation: chondrogenic markers evaluation", Artif. Organs., 40(10), 929-937. https://doi.org/10.1111/aor.12696.   DOI
31 Yoshitani, M., Fukuda, S., Itoi, S.-i., Morino, S., Tao, H., Nakada, A., Inada, Y., Endo, K. and Nakamura, T. (2007), "Experimental repair of phrenic nerve using a polyglycolic acid and collagen tube", J. Thorac. Cardiov. Sur., 133(3), 726-732. e723. https://doi.org/10.1016/j.jtcvs.2006.08.089.   DOI
32 Sionkowska, A., Lewandowska, K. and Adamiak, K. (2020), "The influence of UV light on rheological properties of collagen extracted from silver carp skin", Materials, 13(19), 4453. https://doi.org/10.3390/ma13194453.   DOI
33 Callahan, L.A.S., Xie, S., Barker, I.A., Zheng, J., Reneker, D.H., Dove, A.P. and Becker, M.L. (2013), "Directed differentiation and neurite extension of mouse embryonic stem cell on aligned poly (lactide) nanofibers functionalized with YIGSR peptide", Biomaterials, 34(36), 9089-9095. https://doi.org/10.1016/j.biomaterials.2013.08.028.   DOI
34 Li, N., Zhang, X., Song, Q., Su, R., Zhang, Q., Kong, T., Liu, L., Jin, G., Tang, M. and Cheng, G. (2011), "The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates", Biomaterials, 32(35), 9374-9382. 10.1016/j.biomaterials.2011.08.065.   DOI
35 Moraveji, M., Haghighipour, N., Keshvari, H., Abbariki, T.N., Shokrgozar, M.A. and Amanzadeh, A. (2016), "Effect of extremely low frequency electromagnetic field on MAP2 and Nestin gene expression of hair follicle dermal papilla cells", Int. J. Artificial Organs, 39(6), 294-299. https://doi.org/10.5301/ijao.5000512.   DOI
36 Rastin, H., Zhang, B., Bi, J., Hassan, K., Tung, T.T. and Losic, D. (2020), "3D printing of cell-laden electroconductive bioinks for tissue engineering applications", J. Mater. Chem. B, 8(27), 5862-5876. https://doi.org/10.1039/D0TB00627K.   DOI
37 Zhang, B., Wei, P., Zhou, Z. and Wei, T. (2016), "Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights", Adv. Drug Deliver. Rev., 105, 145-162. https://doi.org/10.1016/j.addr.2016.08.009.   DOI
38 Zhang, Z., Klausen, L.H., Chen, M. and Dong, M. (2018), "Electroactive scaffolds for neurogenesis and myogenesis: Graphene-based nanomaterials", Small, 14(48), 1801983. https://doi.org/10.1002/smll.201801983.   DOI
39 Raposio, E., Guida, C., Baldelli, I., Benvenuto, F., Curto, M., Paleari, L., Filippia, F., Fioccab, R., Robello. G. and Santi, P. (2007), "Characterization and induction of human preadipocytes", Toxicol. in Vitro, 21(2), 330-334. https://doi.org/10.1016/j.tiv.2006.09.022.   DOI
40 Rohani Rad, E., Vahabi, H., Formela, K., Saeb, M.R. and Thomas, S. (2019), "Injectable poloxamer/graphene oxide hydrogels with well-controlled mechanical and rheological properties", Polym. Adv. Technol., 30(9), 2250-2260. https://doi.org/10.1002/pat.4654.   DOI
41 Ryu, S. and Kim, B.-S. (2013), "Culture of neural cells and stem cells on graphene", Tissue Eng., 10(2), 39-46. https://doi.org/10.1007/s13770-013-0384-6.   DOI
42 Magaz, A., Spencer, B.F., Hardy, J.G., Li, X., Gough, J.E. and Blaker, J.J. (2020), "Modulation of neuronal cell affinity on PEDOT-PSS nonwoven silk scaffolds for neural tissue engineering", ACS Biomater. Sci. Eng., 6(12), 6906-6916. https://doi.org/10.1021/acsbiomaterials.0c01239.   DOI
43 Muyonga, J., Cole, C. and Duodu, K. (2004), "Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus)", Food Chem., 86(3), 325-332. https://doi.org/10.1016/j.foodchem.2003.09.038.   DOI
44 Le Belle, J.E., Orozco, N.M., Paucar, A.A., Saxe, J.P., Mottahedeh, J., Pyle, A.D., Wu, H. and Kornblum, H.I. (2011), "Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner", Cell Stem Cell, 8(1), 59-71. https://doi.org/10.1016/j.stem.2010.11.028.   DOI
45 Ma, Q., Chen, C., Deng, P., Zhu, G., Lin, M., Zhang, L., Xu, S., He, M., Lu, Y., Duan, W., Pi, H., Cao, Z., Pei, L., Li, M., Liu, C., Zhang, Y., Zhong, M., Zhou, Z. and Yu, Z. (2016), "Extremely low-frequency electromagnetic fields promote in vitro neuronal differentiation and neurite outgrowth of embryonic neural stem cells via up-regulating TRPC1", PloS one, 11(3), e0150923-e0150923. https://doi.org/10.1371/journal.pone.0150923.   DOI
46 Markov, M. and Pilla, A. (1997), "Weak static magnetic field modulation of myosin phosphorylation in a cell-free preparation: calcium dependence", Bioelectrochem. Bioenergetic., 43(2), 233-238. https://doi.org/10.1016/S0302-4598(96)02226-X.   DOI
47 Acar, H., Garifullin, R. and Guler, M.O. (2011), "Self-assembled template-directed synthesis of one-dimensional silica and titania nanostructures", Langmuir, 27(3), 1079-1084. https://doi.org/10.1021/la104518g.   DOI
48 Szymanski, J.M., Jallerat, Q. and Feinberg, A.W. (2014), "ECM protein nanofibers and nanostructures engineered using surface-initiated assembly", J. Visual. Experiments: JoVE, (86), https://dx.doi.org/10.3791%2F51176.   DOI
49 Ongaro, A., Pellati, A., Bagheri, L., Fortini, C., Setti, S. and De Mattei, M. (2014), "Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells", Bioelectromagnetics, 35(6), 426-436. https://doi.org/10.1002/bem.21862.   DOI
50 Khoram, M.M., Hosseini, M., Hadi, A. and Shishehsaz, M. (2020), "Bending analysis of bidirectional FGM Timoshenko nanobeam subjected to mechanical and magnetic forces and resting on Winkler-Pasternak foundation", Int. J. Appl. Mech., 12(8), 2050093. https://doi.org/10.1142/S1758825120500933.   DOI
51 Alegret, N., Dominguez-Alfaro, A., Gonzalez-Dominguez, J.M., Arnaiz, B., Cossio, U., Bosi, S., Vazquez, E., Ramos-Cabrer, P., Mecerreyes, D. and Prato, M. (2018), "Three-Dimensional Conductive Scaffolds as Neural Prostheses Based on Carbon Nanotubes and Polypyrrole", ACS Appl. Mater. Interf., 10(50), 43904-43914. doi:https://doi.org/10.1021/acsami.8b16462.   DOI
52 Binhi, V., Alipov, Y.D. and Belyaev, I.Y. (2001), "Effect of static magnetic field on E. coli cells and individual rotations of ion-protein complexes", Bioelectromagnetics, 22(2), 79-86. https://doi.org/10.1002/1521-186X(200102)22:2%3C79::AIDBEM1009%3E3.0.CO;2-7.   DOI
53 Yin, Y., Huang, P., Han, Z., Wei, G., Zhou, C., Wen, J., Su, B., Wang, X. and Wang, Y. (2014), "Collagen nanofibers facilitated presynaptic maturation in differentiated neurons from spinal-cord-derived neural stem cells through MAPK/ERK1/2-Synapsin I signaling pathway", Biomacromolecules, 15(7), 2449-2460. https://doi.org/10.1021/bm500321h.   DOI
54 Barati, A., Adeli, M.M. and Hadi, A. (2020a), "Static torsion of bidirectional functionally graded microtube based on the couple stress theory under magnetic field", Int. J. Appl. Mech., 12(02), 2050021. https://doi.org/10.1142/S1758825120500210.   DOI
55 Bedard, A. and Parent, A. (2004), "Evidence of newly generated neurons in the human olfactory bulb", Dev. Brain Res., 151(1), 159-168. https://doi.org/10.1016/j.devbrainres.2004.03.021.   DOI
56 O zgun, A., Marote, A., Behie, L.A., Salgado, A. and Garipcan, B. (2019), "Extremely low frequency magnetic field induces human neuronal differentiation through NMDA receptor activation", J. Neural Transm., 126(10), 1281-1290. https://doi.org/10.1007/s00702-019-02045-5.   DOI
57 Pereda, A.E. (2014), "Electrical synapses and their functional interactions with chemical synapses", Nat. Rev. Neurosci., 15(4), 250. https://doi.org/10.1038/nrn3708.   DOI
58 Tonini, R., Baroni, M.D., Masala, E., Micheletti, M., Ferroni, A. and Mazzanti, M. (2001), "Calcium protects differentiating neuroblastoma cells during 50 Hz electromagnetic radiation", Biophys. J., 81(5), 2580-2589. https://doi.org/10.1016/S0006-3495(01)75902-4.   DOI
59 Wychowaniec, J.K., Litowczenko, J., Tadyszak, K., Natu, V., Aparicio, C., Peplinska, B., Barsoumc, M.W., Otyepka, M. and Scheibe, B. (2020), "Unique cellular network formation guided by heterostructures based on reduced graphene oxide-Ti3C2Tx MXene hydrogels", Acta Biomater., 115, 104-115. https://doi.org/10.1016/j.actbio.2020.08.010.   DOI
60 Zhang, K., Zheng, H., Liang, S. and Gao, C. (2016), "Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth", Acta Biomaterialia, 37, 131-142. https://doi.org/10.1016/j.actbio.2016.04.008.   DOI
61 Driscoll, N., Richardson, A.G., Maleski, K., Anasori, B., Adewole, O., Lelyukh, P., Escobedo, L., Cullen, D.K., Lucas, T.H., Gogotsi, Y. and Vitale, F. (2018), "Two-dimensional Ti3C2 MXene for high-resolution neural interfaces", ACS Nano, 12(10), 10419-10429. https://doi.org/10.1021/acsnano.8b06014.   DOI
62 Bojnordi, M.N., Azizi, H., Skutella, T., Movahedin, M., Pourabdolhossein, F., Shojaei, A. and Hamidabadi, H.G. (2016), "Differentiation of Spermatogonia Stem Cells into Functional Mature Neurons Characterized with Differential Gene Expression", Mole. Neurobiol., 1-7. https://doi.org/10.1007/s12035-016-0097-7.   DOI
63 Buchachenko, A.L., Lukzen, N.N. and Pedersen, J.B. (2007), "On the magnetic field and isotope effects in enzymatic phosphorylation", Chem. Phys. Lett., 434(1-3), 139-143. https://doi.org/10.1016/j.cplett.2006.12.019.   DOI
64 Cho, H., Seo, Y.K., Yoon, H.H., Kim, S.C., Kim, S.M., Song, K.Y. and Park, J.K. (2012), "Neural stimulation on human bone marrow-derived mesenchymal stem cells by extremely low frequency electromagnetic fields", Biotechnol. Prog., 28(5), 1329-1335. https://doi.org/10.1002/btpr.1607.   DOI
65 Garrudo, F.F., Chapman, C.A., Hoffman, P.R., Udangawa, R.W., Silva, J.C., Mikael, P.E., Rodrigues, C.A.V., Cabral, J.M.S., Morgado, J.M.F., Ferreira, F.C. and Lindhardt, R.J. (2019), "Polyaniline-polycaprolactone blended nanofibers for neural cell culture", Eur. Polym. J., 117, 28-37. https://doi.org/10.1016/j.eurpolymj.2019.04.048.   DOI
66 Gupta, P., Agrawal, A., Murali, K., Varshney, R., Beniwal, S., Manhas, S., Roy, P. and Lahiri, D. (2019), "Differential neural cell adhesion and neurite outgrowth on carbon nanotube and graphene reinforced polymeric scaffolds", Mater. Sci. Eng. C, 97, 539-551. https://doi.org/10.1016/j.msec.2018.12.065.   DOI
67 Rastin, H., Zhang, B., Mazinani, A., Hassan, K., Bi, J., Tung, T.T. and Losic, D. (2020), "3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks", Nanoscale, 12(30), 16069-16080. https://doi.org/10.1039/D0NR02581J.   DOI
68 Xia, Y., Li, S., Nie, C., Zhang, J., Zhou, S., Yang, H., Li, M., Li, W., Cheng. C. and Haag, R. (2019), "A multivalent polyaniondispersed carbon nanotube toward highly bioactive nanostructured fibrous stem cell scaffolds", Appl. Mater. Today, 16, 518-528. https://doi.org/10.1016/j.apmt.2019.07.006.   DOI
69 Schnell, E., Klinkhammer, K., Balzer, S., Brook, G., Klee, D., Dalton, P. and Mey, J. (2007), "Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-εcaprolactone and a collagen/poly-ε-caprolactone blend", Biomaterials, 28(19), 3012-3025. https://doi.org/10.1016/j.biomaterials.2007.03.009.   DOI
70 Vasita, R. and Katti, D.S. (2006), "Nanofibers and their applications in tissue engineering", Int. J. Nanomed., 1(1), 15. https://dx.doi.org/10.2147%2Fnano.2006.1.1.15.   DOI
71 Vijayavenkataraman, S., Thaharah, S., Zhang, S., Lu, W.F. and Fuh, J.Y.H. (2018), "3D-Printed PCL/rGO conductive scaffolds for peripheral nerve injury repair", Artif. Organs., 43(5), 515-523.https://doi.org/10.1111/aor.13360.   DOI
72 Xie, J., Willerth, S.M., Li,X., Macewan, M.R., Rader, A., Sakiyama-Elbert, S.E. and Xia, Y. (2009), "The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages", Biomaterials, 30(3), 354-362. https://doi.org/10.1016%2Fj.biomaterials.2008.09.046.   DOI
73 Soleimani, A., Dastani, K., Hadi, A. and Naei, M.H. (2019), "Effect of out-of-plane defects on the postbuckling behavior of graphene sheets based on nonlocal elasticity theory", Steel Compos. Struct., Int. J., 30(6), 517-534. https://doi.org/10.12989/scs.2019.30.6.517.   DOI
74 Teo, W.E. and Ramakrishna, S. (2006), "A review on electrospinning design and nanofibre assemblies", Nanotechnology, 17(14), R89. https://doi.org/10.1088/0957-4484/17/14/r01.   DOI
75 Wang, Z., Sarje, A., Che, P.-L. and Yarema, K.J. (2009), "Moderate strength (0.23-0.28 T) static magnetic fields (SMF) modulate signaling and differentiation in human embryonic cells", BMC Genomics, 10(1), 356. https://doi.org/10.1186/1471-2164-10-356.   DOI
76 Ouyang, Y., Huang, C., Zhu, Y., Fan, C. and Ke, Q. (2013), "Fabrication of seamless electrospun collagen/PLGA conduits whose walls comprise highly longitudinal aligned nanofibers for nerve regeneration", J. Biomed. Nanotechnol., 9(6), 931-943. https://doi.org/10.1166/jbn.2013.1605.   DOI