Browse > Article
http://dx.doi.org/10.12989/anr.2021.10.6.539

Free vibration and buckling of functionally graded carbon nanotubes / graphene platelets Timoshenko sandwich beam resting on variable elastic foundation  

Nejadi, Mohammad Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Mehrabi, Mojtaba (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Publication Information
Advances in nano research / v.10, no.6, 2021 , pp. 539-548 More about this Journal
Abstract
Sandwich structures made of composites are widely applicable in different industries, including aerospace and power plants. The combination of a porous sandwich with functionally graded materials makes structures more resistant to analyze buckling and vibration behaviors. According to its high surface area and high strength, adding graphene platelets to the composite increases the final mechanical properties of composites. In the present paper, the effect of volume fraction distribution of fibers, numbers, and angles of layers in composites will be investigated. Additionally, the different porosity coefficients and distribution along the beam length will consider and the best porosity distributions will identify. Pasternak elastic foundation is considered during the beam length as linearly and parabolically. The equations of motion for the Timoshenko sandwich beam are solved by the differential quadrature method (DQM). The influences of adding graphene platelets with three various patterns on critical buckling load and natural frequency of composite beam will investigate. Also, the buckling and vibration behaviors of pure composites, perfect composite and FGM (Functionally Graded Material) composites will compare. Moreover, the critical buckling load will obtain by the Mori-Tanaka model.
Keywords
carbon nanotubes; graphene platelets; Timoshenko sandwich beam; porous core; DQM;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Anirudh, B., Ganapathi, M., Anant, C. and Polit, O. (2019), "A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: Bending, vibration and buckling", Compos. Struct., 222, 110899. https://doi.org/10.1016/j.compstruct.2019.110899.   DOI
2 Bessaim, A., Ahmed Houari, M.S., Abdelmoumen Anis, B., Kaci, A., Tounsi, A. and Adda Bedia, E.A. (2018), "Buckling analysis of embedded nanosize FG beams based on a refined hyperbolic shear deformation theory", J. Appl. Computat. Mech., 4(3), 140-146. https://doi.org/10.22055/JACM.2017.22996.1146.   DOI
3 Hosseini-Hashemi, S., Bedroud, M. and Nazemnezhad, R. (2013), "An exact analytical solution for free vibration of functionally graded circular/annular Mindlin nanoplates via nonlocal elasticity", Compos. Struct., 103, 108-118. https://doi.org/10.1016/j.compstruct.2013.02.022.   DOI
4 Jabbari, M. and Rezaei, M. (2016), "Mechanical Buckling of FG Saturated Porous Rectangular Plate with Piezoelectric Actuators", Iran. J. Mech. Eng., 17 (2), 45-65.
5 Liu, L. and Huang, Z. (2014), "A note on Mori-Tanaka's method", Acta Mech. Solida Sin., 27(3), 234-244. https://doi.org/10.1016/S0894-9166(14)60033-1.   DOI
6 Malekzadeh, P., Setoodeh, A.R. and Beni, A.A. (2011), "Small scale effect on the thermal buckling of orthotropic arbitrary straight-sided quadrilateral nanoplates embedded in an elastic medium", Compos. Struct., 93, 2083-2089. https://doi.org/10.1016/j.compstruct.2011.02.013.   DOI
7 Mohammadimehr, M., Afshari, H., Salemi, M., Torabi, K. and Mehrabi, M. (2019), "Free vibration and buckling analyses of functionally graded annular thin sector plate in-plane loads using GDQM", Struct. Eng. Mech., Int. J., 71(5), 525-544. https://doi.org/10.12989/sem.2019.71.5.525.   DOI
8 Chen, X.C., Chen, L., Huang, S., Li, M. and Li, X. (2021), "Nonlinear forced vibration of in-plane bi-directional functionally graded materials rectangular plate with global and localized geometrical imperfections", Appl. Math. Model., 93, 443-466. https://doi.org/10.1016/j.apm.2020.12.033.   DOI
9 Ebrahimi, F., Nouraei, M., Dabbagh, A. and Civalek, O. (2019), "Buckling analysis of graphene oxide powder-reinforced nanocomposite beams subjected to non-uniform magnetic field", Struct. Eng. Mech., Int. J., 71(4), 351-361. https://doi.org/10.12989/sem.2019.71.4.351.   DOI
10 Noroozi, R., Barati, A., Kazemi, A., Norouzi, S. and Hadi, A. (2020), "Torsional vibration analysis of bi-directional FG nanocone with arbitrary cross-section based on nonlocal strain gradient elasticity", Adv. Nano Res., Int. J., 8(1), 13-24. https://doi.org/10.12989/anr.2020.8.1.013.   DOI
11 Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Computat. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.   DOI
12 Akbas, S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.   DOI
13 Li, L., Li, X. and Hu, Y. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010.   DOI
14 Tang, H., Li, L. and Hu, Y. (2018), "Buckling analysis of twodirectionally porous beam", Aerosp. Sci. Technol., 78, 471-479. https://doi.org/10.1016/j.ast.2018.04.045.   DOI
15 She, G.L., Ren, Y.R., Yuan, F.G. and Xiao, W.S. (2018), "On vibrations of porous nanotubes", Int. J. Eng. Sci., 125, 23-35. https://doi.org/10.1016/j.ijengsci.2017.12.009.   DOI
16 She, G.L., Yuan, F.G. and Ren, Y.R. (2018), "On wave propagation of porous nanotubes", Int. J. Eng. Sci., 130, 62-74. https://doi.org/10.1016/j.ijengsci.2018.05.002.   DOI
17 She, G.L., Yuan, F.G., Karami, B., Ren, Y.R. and Xiao, W.S. (2019), "On nonlinear bending behavior of FG porous curved nanotubes", Int. J. Eng. Sci., 135, 58-74. https://doi.org/10.1016/j.ijengsci.2018.11.005.   DOI
18 Sobhy, M. and Zenkour, A.M. (2019), "Porosity and inhomogeneity effects on the buckling and vibration of doubleFGM nanoplates via a quasi-3D refined theory", Compos. Struct., 220, 289-303. https://doi.org/10.1016/j.compstruct.2019.03.096.   DOI
19 Taborda, C.S., Bernardo, L. and Gama, J. (2018), "Effective torsional strength of axially restricted RC beams", Struct. Eng. Mech., Int. J., 67(5), 465-479. https://doi.org/10.12989/sem.2018.67.5.465.   DOI
20 Gao, Y., Xiao, W.S. and Zhu, H. (2019), "Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method", Struct. Eng. Mech., Int. J., 69(2), 205-219. https://doi.org/10.12989/sem.2019.69.2.205.   DOI
21 Halpin, J.C. and Tsai, S.W. (1967), "Environmental Factors in Composite Materials Design", U.S. Air Force Technical Report AFML TR, 67423.
22 Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., Int. J., 7(1), 51-61. https://doi.org/10.12989/anr.2019.7.1.051.   DOI
23 Jabbari, M., Hashemitaheri, M., Mojahedin, A. and Eslami, M.R. (2014), "Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials", J. Therm. Stresses, 37(2), 202-220. https://doi.org/10.1080/01495739.2013.839768.   DOI
24 Shahsavari, D., Karami, B. and Mansouri, S. (2018), "Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories", Eur. J. Mech. A-Solid., 67, 200-214. https://doi.org/10.1016/j.euromechsol.2017.09.004.   DOI
25 Kim, J., Kamil Zur, K. and Reddy, J.N. (2019), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. https://doi.org/10.1016/j.compstruct.2018.11.023.   DOI
26 Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2019), "Functionally graded Graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect", Compos. Part B-Eng., 166, 310-327. https://doi.org/10.1016/j.compositesb.2018.11.074.   DOI
27 Timoshenko, S. and Young, D.H. (1995), Vibration Problems in Engineering, VanNostrand Company, New York, U.S.A.
28 Magnucki, K., Malinowski, M. and Kasprzak, J. (2006) "Bending and Buckling of a Rectangular Porous Plate", Steel Compos. Struct., Int. J., 6(4), 319-333. https://doi.org/10.12989/scs.2014.16.3.325.   DOI
29 Mehrabi, M., Mohammadimehr, M. and Mousavinejad, F.S. (2021), "2D magneto-mechanical vibration analysis of a micro composite Timoshenko beam resting on orthotropic medium", Smart Struct. Syst., Int. J., 27(1), 1-18. http://dx.doi.org/10.12989/sss.2021.27.1.001.   DOI
30 Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., Int. J., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.   DOI
31 Jabbari, M., Mojahedin, A., Khorshidvand. A.R. and Eslami, M.R. (2013). "Buckling analysis of a functionally graded thin circular plate made of saturated porous materials", J. Eng. Mech., 140(2), 287-295. https://doi.org/10.1061/(asce)em.1943-7889.0000663.   DOI
32 Magnucka-Blandzi, E. (2008), "Axisymmetrical deflection and buckling of circular porous-cellular plate", Thin Wall. Struct., 46, 333-337. https://doi.org/10.1016/j.tws.2007.06.006.   DOI
33 Akbas, S.D. (2017), "Vibration and static analysis of functionally graded porous plates", J. Appl. Computat. Mech., 3(3), 199-207. https://doi.org/10.22055/JACM.2017.21540.1107.   DOI
34 Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., Int. J., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.   DOI
35 Analooei, H.R., Azhari, M., Heidarpour, A., Ng, T.Y. and Lin, R.M. (2013), "Elastic buckling and vibration analyses of orthotropic Nano plates using nonlocal continuum mechanics and spline finite strip method", Appl. Math. Model., 37(10-11), 6703-6717. https://doi.org/10.1016/j.commatsci.2012.06.031.   DOI
36 Ansari, R. and Sahmani, S. (2011), "Surface stress effects on the free vibration behavior of nanoplates", Int. J. Eng. Sci., 49(11), 1204-1215. https://doi.org/10.1016/j.ijengsci.2011.06.005.   DOI
37 Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021.   DOI
38 Li, X. (2021), "Parametric resonances of rotating composite laminated nonlinear cylindrical shells under periodic axial loads and hydrothermal environment", Compos. Struct., 255, 112887. https://doi.org/10.1016/j.compstruct.2020.112887.   DOI
39 Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic Buckling and Static Bending of Shear Deformable Functionally Graded Porous Beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.   DOI
40 Chen, D., Kitipornchai, S. and Yang, J. (2017) "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.   DOI
41 Chikr, C., Kaci, A., Yeghnem, R. and Tounsi, A. (2019), "A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates", Struct. Eng. Mech., Int. J., 72(5), 653-673. https://doi.org/10.12989/sem.2019.72.5.653.   DOI
42 Demirhan, P.A. and Taskin, V. (2019), "Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach", Compos. Part B-Eng., 160, 661-676. https://doi.org/10.1016/j.compositesb.2018.12.020.   DOI
43 Shariati, A., Barati, M.R., Ebrahimi, F., Singhal, A. and Toghroli, A. (2020), "Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory", Adv. Nano Res., Int. J., 8(4), 265-276. https://doi.org/10.12989/anr.2020.8.4.265.   DOI
44 Arefi, M., Kiani, M. and Rabczuk, T., (2019) "Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets", Compos. Part B-Eng., 168, 320-333. https://doi.org/10.1016/j.compositesb.2019.02.057.   DOI
45 Mohammadimehr, M., Mehrabi, M. and Mousavinejad, F.S. (2020), "Magneto-mechanical vibration analysis of single-/three-layered micro-Timoshenko porous beam and graphene platelet as reinforcement based on modified strain gradient theory and differential quadrature method", J. Vib. Contr., 1077546320949083. https://doi.org/10.1177/1077546320949083.   DOI
46 Murmu, T., McCarthy, M.A. and Adhikari, S. (2013), "In-plane Magnetic Field Affected Transverse Vibration of Embedded Singlelayer Graphene Sheets using Equivalent Nonlocal Elasticity Approach", Compos. Struct., 96, 57-63. https://doi.org/10.1016/j.compstruct.2012.09.005.   DOI
47 Nejadi, M.M. and Mohammadimehr, M. (2020), "Buckling analysis of nano composite sandwich Euler-Bernoulli beam considering porosity distribution on elastic foundation using DQM", Adv. Nano Res., Int. J., 8(1), 59-68. https://doi.org/10.12989/anr.2020.8.1.059.   DOI
48 Nejadi, M.M., Mohammadimehr, M. and Mehrabi, M. (2021), "Free vibration and stability analysis of sandwich pipe by considering porosity and graphene platelet effects on conveying fluid flow", Alexandria Eng. J., 60(1), 1945-1954. https://doi.org/10.1016/j.aej.2020.11.042.   DOI
49 Radic, N. (2018), "On buckling of porous double-layered FG nanoplates in the Pasternak elastic foundation based on nonlocal strain gradient elasticity", Compos. Part B-Eng., 153, 456-479. https://doi.org/10.1016/j.compositesb.2018.09.014.   DOI
50 Tang, H., Li, L. and Hu, Y. (2019), "Coupling effect of thickness and shear deformation on size-dependent bending of micro/nano-scale porous beams", Appl. Math. Model., 66, 527-547. https://doi.org/10.1016/j.apm.2018.09.027.   DOI