Browse > Article
http://dx.doi.org/10.12989/anr.2017.5.1.061

An approach to model the temperature effects on I-V characteristics of CNTFETs  

Marani, Roberto (Consiglio Nazionale delle Ricerche, Istituto di Studi sui Sistemi Intelligenti per l'Automazione)
Perri, Anna G. (Dipartimento di Ingegneria Elettrica e dell'Informazione, Laboratorio di Dispositivi Elettronici)
Publication Information
Advances in nano research / v.5, no.1, 2017 , pp. 61-67 More about this Journal
Abstract
A semi-empirical approach to model the temperature effects on I-V characteristics of Carbon Nanotube Field Effect Transistors (CNTFETs) is proposed. The model includes two thermal parameters describing CNTFET behaviour in terms of saturation drain current and threshold voltage, whose values are extracted from the simulated and trans-characteristics of the device in different temperature conditions. Our results are compared with those of a numerical model online available, obtaining I-V characteristics comparable but with a lower CPU calculation time.
Keywords
nanoelectronic devices; carbon nanotube field effect transistors; modeling; device simulation; I-V characteristics; temperature effects; computer aided desig;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Avouris, Ph., Radosavljevic, M. and Wind, S.J. (2005), "Carbon nanotube electronics and optoelectronic", in Appl. Physics of Carbon Nanotubes: Fundamentals of Theory, Optics and Transport Devices, eds. S.V. Rotkin & S. Subramone, Berlin Heidelberg, Springer-Verlag, pp. 1-25.
2 Gelao, G., Marani, R., Diana, R. and Perri, A.G. (2011), "A semi-empirical SPICE model for n-type conventional CNTFETS", IEEE Trans. Nanotechnol., 10(3), 506-512.   DOI
3 Gelao, G., Marani, R., Pizzulli, L. and Perri, A.G. (2015a), "A model to improve analysis of CNTFET logic gates in Verilog-A-Part I: static analysis", Current Nanosci., 11(4), 515-526.   DOI
4 Gelao, G., Marani, R., Pizzulli, L. and Perri, A.G. (2015b), "A model to improve analysis of CNTFET logic gates in Verilog-A-Part II: dynamic analysis", Current Nanosci., 11(6), 770-783.   DOI
5 Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., Mcintyre, P., Mceuen, P., Lundstrom, M. and Dai, M. (2002), "High-Kdielectrics for advanced carbon nanotube transistors and logic gates", Nature Mater., 1, 241-246.   DOI
6 Marani, R. and Perri, A.G. (2012), "A DC model of carbon nanotube field effect transistor for CAD applications", Int. J. Electro., 99(3), 427-444.
7 Javey, A., Guo, J., Wang, Q., Lundstrom, M. and Dai, M. (2003), "Ballistic carbon nanotube field-effect transistors", Nature, 424, 654.   DOI
8 Marani, R. and Perri, A.G. (2009), "CNTFET modelling for electronic circuit design", Electro Chem. Transact., 23(1), 429-437.
9 Marani, R. and Perri, A.G. (2011), "A compact, semi-empirical model of carbon nanotube field effect transistors oriented to simulation software", Current Nanosci., 7(2), 245-253.   DOI
10 Marani, R., Gelao, G. and Perri, A.G. (2012), "Comparison of ABM SPICE library with Verilog-A for compact CNTFET model implementation", Current Nanosci., 8(4), 556-565.   DOI
11 Marani, R., Gelao, G. and Perri, A.G. (2013), "Modeling of carbon nanotube field effect transistors oriented to SPICE software for A/D circuit design", Microelectro. J., 44(1), 33-39.   DOI
12 Marani, R. and Perri, A.G. (2016), "A DC thermal model of carbon nanotube field effect transistors for CAD applications", ECS J. Solid State Sci. Technol., 5(8), M3001-M3004.
13 Naderi, A., Noorbakhsh, S.M. and Elahipanah, H. (2012), "Temperature dependence of electrical characteristics of carbon nanotube field effect transistors: A quantum simulation study", J. Nanomater., 2012, 1-7.
14 Rahman, A., Wang, J., Guo, J., Liu, Y., Matsudaira, A., Ahmed, S., Datta, S. and Lundstrom, M. (2006), "FETToy", http://www.nanohub.org
15 Perri, A.G. (2011), 'Dispositivi Elettronici Avanzati', Progedit editor, Bari, Italy.