Browse > Article
http://dx.doi.org/10.5228/KSTP.2012.21.4.246

Quantitative Analysis of Mechano-luminescence and Its Mechanism in SAO  

Timilsina, S. (경북대학교 나노소재공학부)
Lee, C.J. (경북대학교 건축공학과)
Jang, I.Y. (금오공과대학교 토목공학과)
Kim, J.S. (경북대학교 나노소재공학부)
Publication Information
Transactions of Materials Processing / v.21, no.4, 2012 , pp. 246-251 More about this Journal
Abstract
The mechanism for mechano-luminescence(ML) in SAO phosphor was investigated quantitatively by measuring the emission intensity under three different tensile conditions. It was found that the ML of SAO was strongly dependent on the dynamic loading rate rather than by the applied load itself. The mechano-luminescent emission in SAO was evaluated based on the trap-releasing process. It was found that the shape of the ML curve in the transient regime obtained from the rate equation has good agreement with the experimental data.
Keywords
Mechano-luminescence(ML); Trap-releasing process; SAO;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. N. Xu, M. Akiyama, P. Sun, T. Watanabe 1997, A Novel Approach to Electrochromism in $WO_3$ Thin Film using Piezoelectric Ceramics for Power Supply, Appl. Phys. Lett., Vol. 70, No. 13, pp. 1639-1640.   DOI
2 C. N. Xu, T. Watanabe, M. Akiyama, X. G. Zheng, 1999, Artificial Skin to Sense Mechanical Stress by Visible Light Emission, Appl. Phys. Lett., Vol. 74, No. 9, pp. 1236-1238.   DOI
3 H. Matsui, C. N. Xu, H. Tateyama, 2001, Stress-Stimulated Luminescence from $ZnAl_2O_4:Mn$, Appl. Phys. Lett., Vol. 78, No. 8, pp. 1068-1070.   DOI
4 Y. Liu C. N. Xu, 2003, Influence of Calcining Temperature on Photoluminescence and Triboluminescence of Europium-Doped Strontium Aluminate Particles Prepared by Sol-Gel Process, J. Phys. Chem. B, Vol. 107, No. 17, pp. 3991-3995.   DOI   ScienceOn
5 C. N. Xu, T. Watanabe, M. Akiyama, X. G. Zheng, 1999, Direct View of Stress Distribution in Solid by Mechanoluminescence, Appl. Phys. Lett., Vol. 74, No. 17, pp. 2414-2416.   DOI
6 H. Matsui, C. N. Xu, Y. Liu, H. Tateyama, J. Electrochem, 2004, Origin of Mechano Luminescence from Mn-activated ZnAl2O4: Triboelectricity-induced Electroluminescence, Phys. Rev. B, Vol. 69, No. 23, pp. 235109-2351097.   DOI
7 S. D. Jee, K. S. Choi, J. S. Kim, 2011, Luminescence Properties of (Sr0.95-x-yMgxYy)Si2O2-yN2+y:Eu2+0.05 for Novel LED Conversion Phosphors, Met. Mater. Int., Vol. 17, No. 4, pp. 655-660.   DOI
8 K. S. Sohn, S. Y. Seo, Y. N. Kwon, H. D. Park, 2002, Direct Observation of Crack Tip Stress Field Using the Mechanoluminescence of SrAl2O4:(Eu,Dy,Nd), J. Am. Ceram. Soc., Vol. 85, No. 3, pp. 712-714.
9 J. S. Kim, Y. N. Kwon, K. S. Sohn, 2003, Dynamic Visualization of Crack Propagation and Bridgingstress using the Mechano-luminescence of $SrAl_2O_4$:(Eu,Dy,Nd), Acta Mater., Vol. 51, No. 20, pp. 6437-6442.   DOI   ScienceOn
10 J. S. Kim, Y. N. Kwon, N. Shin, K. S. Sohn, 2005, Visualization of Fractures in Alumina Ceramics by Mechanoluminescence, Acta Mater., Vol. 53, No. 16, pp. 4337-4343.   DOI
11 J. S. Kim, Y. N. Kwon, N. Shin, K. S. Sohn, 2007, Mechanoluminescent $SrAl_2O_4$:Eu,Dy Phosphor for use in Visualization of Quasi-dynamic Crack Propagation, Appl. Phys. Lett., Vol. 90, No. 24, pp. 241916-1-241916-3.   DOI
12 J. S. Kim, K. Kibble, Y. N. Kwon, K. S. Sohn, 2005, Rate-equation Model for the Loading-rate-dependent Mechanoluminescence of SrAl2O4:$Eu^2,Dy^{3+}$, Opt. Lett., Vol. 34, No. 13, pp. 1915-1917.
13 J. S. Kim, 2011, Visualization of Crack Propagation and Fracture Transition in Bulk Metallic Glass using Mechano-luminescence, Trans. Mater. Process., Vol. 20, No. 4, pp. 303-308.   DOI
14 T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, 1996, A New Long Phosphorescent Phosphor with High Brightness, $SrAl_2O_4:Eu^2,Dy^{3+}$, J. Electrochem. Soc., Vol. 143, No. 8, pp. 2670-2673.   DOI   ScienceOn
15 H. Yamamoto, T. Matsuzawa, 1997, Mechanism of Long Phosphorescence of SrAl2O4:Eu2+Dy3+ and CaAl2O4:Eu2+Nd3+, J. Lumin., Vol. 72-74, pp. 287-289.   DOI
16 C. N. Xu, H. Yamada, X. Wang, X. G. Zheng, 2004, Strong Elasticoluminescence from Monoclinic-structure $SrAl_2O_4$, Appl. Phys. Lett., Vol. 84, No. 16, pp. 3040-3042.   DOI
17 W. L. Medlin, 1961, Decay of Phosphorescence in $CaCO_3,\;MgCO_3,\;CaMg(CO_3)_2, \;and\;CaSO_4$, Phys. Rev., Vol. 122, No. 3, pp. 837-842.   DOI
18 C. Li, Y. Adachi, Y. Imai, K. Nishikubo, C. N. Xu, 2007, Processing and Properties of $SrAl_2O_4$:Eu Nanoparticles Prepared via Polymer-Coated Precursor, J. Electrochem. Soc., Vol. 154, No. 11, pp. J362-J364.   DOI
19 F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, T. LeMercier, 2005, Mechanism of Phosphorescence Appropriate for the Long-Lasting Phosphors $Eu^{2+}-Doped\;SrAl_2O_4$ with Codopants $Dy^{3+}\;and\;B^{3+}$, Chem. Mater.,Vol. 17, No. 15, pp. 3904-3912.   DOI
20 F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, M. H. Whangbo, 2006, Formulation of Phosphorescence Mechanisms in Inorganic Solids Based on a New Model of Detect Conglomeration, Chem. Mater., Vol. 18, No. 14, pp. 3212-3022.   DOI
21 W. L. Medlin, 1961, Decay of Phosphorescence from a Distribution of Trapping Levels, Phys. Rev., Vol. 123, No. 2, pp. 502-509.   DOI
22 P. Avouris, T. N. Morgan, 1981, A tunneling Model for the Decay of Luminescence in Inorganic Phosphors: The case of $Zn_2SiO_4:Mn$, J. Chem. Phys. Vol. 74, No. 8, pp. 4347-4355.
23 I. F. Chang, P. Thioulouse, 1982, Treatment of Thermostimulated Luminescence, Phosphorescence and Photostimulated Lluminescence with a Tunneling Theory, J. Appl. Phys., Vol. 53, No. 8, pp. 5873-5875.   DOI
24 P. Thioulouse, I. F. Chang, E. A. Giess, 1983, Comparative Study of Phosphorescence and Photostimulated Luminescence in Zinc Silicate Phosphors and Their Description by a Tunneling Mode, J. Electrochem. Soc., Vol. 130, No. 10, pp. 2065-2071.   DOI
25 T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, 1996, A New Long Phosphorescent Phosphor with High Brightness, $SrAl_2O_4:Eu^2,Dy^{3+}$, J. Electrochem. Soc., Vol. 143, No. 8, pp. 2670-2673.   DOI   ScienceOn
26 B. P. Chandra, J. I. Zink, 1980, Mechanical Characteristics and Mechanism of the Triboluminescence of Fluorescent Molecular Crystals, J. Chem. Phys., Vol. 73, No. 12, pp. 5933-5941.   DOI
27 B. P. Chandra, 2008, Mechanoluminescence Induced by Elastic Deformation of Coloured Alkali Halide Crystals using Pressure Steps, J. Lumin., Vol. 128, No. 7, pp. 1217-1224.   DOI
28 B. P. Chandra, S. K. Mahobia, P. Jha, R .K. Kuraria, S. R. Kuraria, R. N. Baghel S. Thaker, 2008, Transient Behaviour of the Mechanoluminescence Induced by Impulsive Deformation of Fluorescent and Phosphorescent Crystals, J. Lumin., Vol. 128, No. 12, pp. 2038-2047.   DOI
29 B. T. Brady, G. A. Rowell, 1986, Laboratory Investigation of the Electrodynamics of Rock Fracture, Nature, Vol. 321, pp. 488-492.   DOI
30 A. J. Walton, 1977, Triboluminescence, Adv. Phys., Vol. 26, No. 6, pp. 887-948.   DOI
31 J. I. Zink, G. E. Hardy, J. E. Sutton, 1976, Triboluminescence of Sugars, J. Phys. Chem., Vol. 80, No. 3, pp. 248-249.   DOI
32 T. Shiota, K. Yasuda, Y. Matsuo, 2008, Correlation Between the Flexure Strength and the Photon Emission Intensity during Fracture on Single Crystal and Polycrystalline MgO, Mater. Sci. Eng., B, Vol. 148, No. 3, pp. 230-233.   DOI
33 T. Shiota, K. Yasuda, and Y. Matsuo, 2008, Dependence of the Particle Emission during the Fracture of Silica Glass on Its Mechanical Property, J. Phys. Conf. Ser., Vol. 100, pp. 072041-072044.   DOI
34 C. G. Camara, J. V. Escobar, J. R. Hird, S. J. Putterman, 2008, Correlation Between Nanosecond X-ray Flashes and Stick-slip Friction in Peeling Tape, Nature, Vol. 455, pp. 1089-1092.   DOI
35 N. C. Eddingsaas, and K. S. Suslick, 2007, Plasma Characteristics of the Discharge Produced during Mechanoluminescence, Phys. Rev. Lett., Vol. 99, No. 23, pp. 234301-234304.   DOI