Browse > Article
http://dx.doi.org/10.4191/KCERS.2010.47.4.333

Observation of Domain Structure and Polarization Switching in (001)-oriented Pb(Mg1/3Nb2/3)O3-x%PbTiO3 Single Crystals by Scanning Force Microscope  

Lee, Eun-Gu (Department of Advanced Materials Engineering, Chosun Unviversity)
Publication Information
Abstract
Domain structure and polarization switching in (001)-oriented $Pb(Mg_{1/3}Nb_{2/3})O_3-x%PbTiO_3$ (PMN-x%PT) crystals for x=20 and 35at% have been investigated in-situ by scanning force microscope (SFM) in a piezoresponse mode under a step DC electrical voltage. In the initial annealed condition, polar nano domains (PND) and domain striations oriented along {110} were observed in x=20 and x=35, respectively. For x=20, domain switching occurs by heterogeneous nucleation, where nucleation is not confined in the vicinity of domain boundaries, but rather can occur throughout the crystal volume. However, for x=35, domain switching tends to be preferentially initiated near pre-existing twin boundaries. With increasing the applying voltage, the nuclei density increased and assembled into {110} striations, indicating a stress-accommodated domain growth process. At higher voltage, nucleation occurs heterogeneously throughout the crystal volume.
Keywords
Polarization; Switching; Domain; SFM;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 I.K. Bdikin, V. Shvartsman, and A.L. Kholkin, “Nanoscale Domains and Local Piezoelectric Hysteresis in $Pb(Zn_{1/3}Nb_{2/3})O_{3}$ Single Crystals,” Appl. Phys. Lett., 83 4232-34 (2003).   DOI
2 Z. Xu, M.C. Kim, J.F. Li, and D. Viehland, “Observation of a Sequence of Domain-like States with Increasing Disorder in Ferroelectrics,” Phil. Mag. A, 74 395-406 (1996).   DOI
3 Y. Imry and S. Ma, “Random-Field Instability of the Oriented State of Continuous Symmetry,” Phys. Rev. Lett., 35 1399-01 (1975).   DOI
4 D. Viehland, J. Powers, and J.F. Li, “Stress Dependence of the Electromechanical Properties of <001>-orient $PbMg_{1/3}Nb_{2/3}O_{3}-PbTiO_{3}$ crystals: Performance Advantages and Limitations,” J. Appl. Phys., 90 2479-43 (2001).   DOI
5 W.J. Mertz, “Domain Formation and Domain Wall Motions in Ferroelectric $BaTiO_3$ Single Crystals,” Physical Review, 95 690-98 (1954).   DOI
6 M.E. Drougard, “Detailed study of switching current in barium titanate,” J. Appl. Phys., 31 352-55 (1960).   DOI
7 R.C. Miller and G. Weinreich, “Mechanism for the Sidewise Motion of 180${\circ}$ Domain Walls in Barium Titante,” Phys. Rev., 117 1460-66 (1960).   DOI
8 V. Shur, E. Rumyantsev, and S. Makarov, “Kinetics of Phase Transformations in Real Finite Systems: Application to Switching Ferroelectrics,” J. Appl. Phys., 84 445-51 (1998).   DOI
9 Y. Ishibashi, “On Polarization Reversals in Ferroelectrics,” Integrated Ferroelectrics, 2 41-9 (1992).   DOI
10 T. Song, S. Aggarwal, Y. Gallais, B. Nagaraj, R. Ramesh, and J. Evans, “Activation Fields in Ferroelectric Thin Film Capacitors: Area Dependence,” Appl. Phys. Lett., 73 3366-68 (1998).   DOI
11 J.F. Scott, L. Kammerdiner, M. Parris, S. Traynor, V. Ottenbacher, A. Shawabkeh, and W. Oliver, “Switching Kinetics of Lead Zirconate Titanate Submicron Thin-film Memories,” J. Appl. Phys., 64 787-92 (1988).   DOI
12 J.F. Scott, “Ferroelectric Memories,” Springer, Berlin, 2000.
13 D. Viehland and J.F. Li, “Kinetics of Polarization Reversal in $0.7PbMg_{1/3}Nb_{2/3}O_{3}-0.3PbTiO_{3}$: Heterogeneous Nucleation in the Vicinity of Random Fields,” J. Appl. Phys., 90 2995-3003 (2001).   DOI
14 R. Guo, L.E. Cross, S-E. Park, B. Noheda, D.E. Cox, and G. Shirane, “Origin of the High Piezoelectric Response in $PbZr_{1-x}Ti_{x}O_{3}$,” Phys. Rev. Lett., 84 5423-26 (2000).   DOI
15 B. Noheda, D. E. Cox, Shirane, J. Gao, and Z. Ye, “Phase Diagram of Ferroelctric Relaxor $(1-x)PbMg_{1/3}Nb_{2/3}O_{3-x}PbTiO_{3}$,” Phys. Rev. B, 66 054104 (2002).   DOI
16 B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.E. Park, D.E. Cox, and G. Shirane, “Tetragonal-to-monoclinic Phase Transition in Ferroelectric Perovskite: The Structure of $PbZr_{0.52}Ti_{0.48}O_{3}$,” Phys. Rev. B, 61 8687-95 (2000).   DOI   ScienceOn
17 D. Viehland and Y. Chen, “Random-field Model for Ferroelectric Domain Dynamics and Polarization Reversal,” J. Appl. Phys., 88 6696-707 (2000).   DOI
18 G. A. Smolenskii, Ferroelectrics and Related Materials, pp. 589-99 Gordon and Breach, New York, 1984.
19 L.E. Cross, “Relaxor Ferroelectrics,” Ferroelectrics, 76 241-67 (1987).   DOI   ScienceOn
20 S. Park and T.R. Shrout, “Characteristics of Relaxor-based Piezoelectric Single Crystals for Ultrasonics,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44 1140-47 (1997).   DOI
21 B. Noheda, D. Cox, G. Shirane, E. Park, L.E. Cross, and Z. Zhong, “Polarization Rotation via a Monoclinic Phase in the Piezoelectric 92% $PbZn_{1/3}Nb_{2/3}O_{3}-8%PbTiO_{3}$,” Phys. Rev. Lett., 86 3891-94 (2001).   DOI
22 L. Bellaiche, A. Garcia, and D. Vanderbilt, “Finite-Temperature Properties of $Pb(Zr_{1-x}Ti_{x})O_{3}$ Alloys from First Principles,” Phys. Rev. Lett., 84 5427-30 (2000).   DOI
23 D. Viehland, “Symmetry-adaptive Ferroelectric Mesostates in Oriented $Pb(BI_{1/3}BII_{2/3})O_{3}$-crystals,” J. Appl. Phys., 88 4794-06 (2000).   DOI
24 D. Viehland and J. Powers, “Effect of Uniaxial Stress on the Electromechanical Properties of $0.7Pb(Mg_{1/3}Nb_{2/3})O_{3}-0.3PbTiO_{3}$ Crystals and Ceramics,” J. Appl. Phys., 89 1820-25 (2001).   DOI