Browse > Article
http://dx.doi.org/10.9721/KJFST.2011.43.2.176

Virulent Bacteriophage for Growth Inhibition of Cronobacter sakazakii and Salmonella enterica Typhimurium  

Lee, Young-Duck (Department of Food and Biotechnology, Kyungwon University)
Park, Jong-Hyun (Department of Food and Biotechnology, Kyungwon University)
Publication Information
Korean Journal of Food Science and Technology / v.43, no.2, 2011 , pp. 176-181 More about this Journal
Abstract
Cronobacter sakazakii and Salmonella enterica Typhimurium are hazardous pathogens, especially for ready-toeat foods. For control of pathogens, the virulent bacteriophages were isolated, identified, and applied to infant formula milk and vegetable juice. The phages were isolated from swine feces and identified by morphology and molecular characteristics. ES2 phage for C. sakazakii and ST2 phage for S enterica Typhimurium were identified as Myoviridae and Siphoviridae, respectively. Their burst sizes were $52{\pm}5PFU/cell$ for ES2 phage and $21{\pm}3PFU/cell$ for ST2 phage after latent period of 30-40 minutes. ST2 phage showed higher heat stability at $60^{\circ}C$ than ES2 phage. ES2 phage held the growth of C. sakazakii untill 6 hr afterwhich the number decreased when applied to the infant formula milk and vegetable juice. ST2 phage also showed growth inhibition so that the number of S. enterica Typhimurium decreased. Therefore, virulent bacteriophages might be an agent for the growth inhibition of C. sakazakii and S. enterica Typhimurium in such the ready-to-eat foods.
Keywords
Cronobacter sakazakii; Salmonella enterica Typhimurium; virulent bacteriophage; infant formula milk; vegetable juice;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Sambrook, J, Russell DW. Molecular cloning: A laboratory manual. 3rd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA (2001)
2 Kropinski AM, Sulakvelidze A, Konczy P, Poppe C. Salmonella phages and prophages-genomics and practical aspects. Method Mol. Biol. 394: 133-175 (2007)   DOI
3 Atterbury RJ, Van Bergen MA, Ortiz F, Lovell MA, Harris JA, De Boer A, Wagenaar JA, Allen VM, Barrow PA. Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl. Environ. Microbiol. 73: 4543-4549 (2007)   DOI   ScienceOn
4 Callaway TR, Edrington TS, Brabban A, Kutter B, Karriker L, Stahl C, Wagstrom E, Anderson R, Poole TL, Genovese K, Krueger N, Harvey R, Nisbet DJ. Evaluation of phage treatment as a strategy to reduce Salmonella populations in growing Swine. Foodborne Pathog. Dis. 8: 261-266 (2011)   DOI   ScienceOn
5 Higgins JP, Higgins SE, Guenther KL, Huff W, Donoghue AM, Donoghue DJ, Hargis BM. Use of a specific bacteriophage treatment to reduce Salmonella in poultry products. Poultry Sci. 84: 1141-1145 (2005)   DOI
6 Sklar IB, Joerger RD. Attempts to utilize bacteriophage to combat Salmonella enterica serovar Enteritidis infection in chickens. J. Food Safety 21: 15-30 (2001)   DOI   ScienceOn
7 Brussow A, Kutter E. Phage Ecology. CRC Press, Boca Raton, FL, USA. pp. 129-163 (2005)
8 Modi R, Hirvi Y, Hill A, Griffiths MW. Effect of phage on survival of Salmonella enteritidis during manufacture and storage of Cheddar cheese made from raw and pasteurized milk. J. Food Prot. 64: 927-933 (2001)
9 Whichard JM, Sriranganathan N, Pierson FW. Suppression for Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. J. Food Prot. 66: 220-225 (2003)
10 Atterbury RJ, Dillon E, Swift C, Connerton PL, Frost JA, Dodd CE. Correlation of Campylobacter bacteriophage with reduced presence of hosts in broiler chicken ceca. Appl. Environ. Microbiol. 71: 4885-4887 (2005)   DOI   ScienceOn
11 Martinez B, Obeso JM, Rodriguez A, Garcia P. Nisin-bacteriohage cross resistance in Staphylococcus aureus. Int. J. Food Microbiol. 122: 253-258 (2008)   DOI   ScienceOn
12 Kim KP, Klumpp J, Loessner MJ. Enterobacter sakazakii bacteriophages can prevent bacterial growth in reconstituted infant formula. Int. J. Food Microbiol. 115: 195-203 (2007)   DOI   ScienceOn
13 Threlfall EJ, Ward LR, Hampton MD, Ridley AM, Rowe B, Roberts D, Gilbert RJ, Van Soneren P, Wall PG, Grimont P. Molecular fingerprinting defines a strain of Salmonella enterica serotype Anatum responsible for an international outbreak associated with formula-dried milk. Epidemiol. Infect. 121: 289-293 (1998)   DOI   ScienceOn
14 Kusumaningrum HD, van Asselt ED, Beumer RR, Zwietering MH. A quantitative analysis of cross-contamination of Salmonella and Campylobacter spp. via domestic kitchen surfaces. J. Food Prot. 67: 1892-1903 (2004)
15 Bornemann R, Zerr DM, Heath J, Koehler J, Grandjean M, Pallipamu R, Duchin J. An outbreak of Salmonella serotype Saintpaul in a children's hospital. Infect. Cont. Hosp. Ep. 23: 671-676 (2002)   DOI   ScienceOn
16 Olsen SJ, Bishop R, Brenner FW, Roels TH, Bean N, Tauxe RV, Slutsker L. The changing epidermiology of Salmonella: Trends in serotypes isolated from humans in the United States 1987-1997. J. Infect. Dis. 183: 753-761 (2001)   DOI   ScienceOn
17 Food and Agriculture Organization-World Health Organization (FAO-WHO) Enterobacter sakazakii and Salmonella in powdered infant formula: Meeting report. p38. In: Microbiological Risk Assessment Series 10. Geneva and Rome. WHO Press, Geneva, Switzerland (2006)
18 Muytjens HL, Roelofs-Willemse H, Jaspar GHJ. Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteriaceae. J. Clin. Microbiol. 26: 743-746 (1988)
19 Edelson-Mammel SG, Buchanan RL. Thermal inactivation of Enterobacter sakazakii in rehyrdated infant formula. J. Food Prot. 67: 60-63 (2004)
20 Kim SH, Park JH. Thermal resistance and inactivation of Enterobacter sakazakii isolates during rehydration of powdered infant formula. J. Microbiol. Biotechnol. 17: 364-368 (2007)
21 National Advisory Committee on Microbiological Criteria for Foods (NACMCF). Microbiological safety evaluations and recommendations on sprouted seeds. Int. J. Food Microbiol. 52: 123-153 (1999)   DOI   ScienceOn
22 Iversen C, Forsythe SJ. Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Food Sci. Technol. 14: 443-454 (2003)   DOI   ScienceOn
23 Iversen C, Forsythe SJ. Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Food Sci. Technol. 14: 443-454 (2003)   DOI   ScienceOn
24 Jung MK, Park JH. Prevalence and thermal stability of Enterobacter sakazakii from unprocessed ready-to-eat agricultural products and powdered infant formulas. Food Sci. Biotechnol. 15: 152-157 (2006)
25 Iversen C, Lehner A, Mullane N, Bidlas E, Cleenwerck I, Marugg J, Fanning S, Stephan R, Joosten H. The taxonomy of Enterobacter sakazakii: Proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov., Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. Malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp.nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol. Biol. 7: 64-67 (2007)   DOI
26 Nzzarowec-White M, Farber JM. Thermal resistance of Enterobacter sakazakii in rehydrated dried-infant formula. Lett. Appl. Microbiol. 24: 9-13 (1997)   DOI   ScienceOn
27 Korea Food & Drug Administration. http://www.kfda.go.kr. Accessed Dec. 18, 2009.
28 CAC. Proposed draft revision of the recommended international code of practice for foods for infants and children. Available at: ftp://ftp.fao.org/codex/ccfh37/fh3704e.pdf. Accessed Dec. 02, 2009.
29 Farmer JJ, Asbury MA, Hickman FW, Brenner DJ. The Enterobacteriaceae study group, Enterobacter sakazakii: A new species of "Enterobacteriaceae" isolated from clinical specimens. Int. J. Syst. Bacteriol. 30: 569-584 (1980)   DOI