Browse > Article

Effect of the Extract of Ulmus davidiana Root on the Activity of Enzymes Related to the Removal of Reactive Oxygens in B6C3F1 Mouse Kidney  

Hong, Jong-Yun (Department of Food Science and Technology, Chung-Ang University)
Song, Hyuk-Hwan (Department of Food Science and Technology, Chung-Ang University)
Lee, Chan (Department of Food Science and Technology, Chung-Ang University)
Publication Information
Korean Journal of Food Science and Technology / v.38, no.4, 2006 , pp. 577-583 More about this Journal
Abstract
The effect of the extract of Ulmus davidiana root on the activity of enzymes related to the removal of reactive oxygen species was investigated in the B6C3F1 mouse kidney. B6C3F1 mice were divided into five groups and fed for 20 weeks. Reduced xanthine of oxidase activity was observed in groups 4 (group fed with U. davidiana extract after N,N-diethylnitrosamine (DEN) treatment and 5 (group fed with U. davidiana extract from the beginning of DEN treatment) compared to group 2 (group treated with DEN). The level of Mn-superoxidase dismutase tended to increase in the groups after DEN treatment. In group 5, the catalase activity increased and the other groups exhibited an unchanged or slightly decreased level of enzyme. Similar effects were found far glutathione peroxidase. A lower degree of TBARS (thiobarbituric acid reactive substance) formation was estimated in groups 4 and 5, compared to that in DEN treated group 2.
Keywords
Extract; Ulmus davidiana root; reactive oxygens; anti-oxidation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Son SH, Park JH, Zee OP. Catechin glycoside from Ulmus davidiana. Arch. Pharm. 21: 219-222 (1989)
2 Lee MK, Sung SH, Lee HS, Cho JH, Kim YC. Lignan and neolignan glycosides from Ulmus davidiana var. japonica. Arch. Pharm. Res. 24: 198-201 (2001)   DOI   ScienceOn
3 Lee SJ, Heo KS, Oh PS, Lim K, Lim KT. Glycoprotein isolated from Ulmus davidiana Nakai inhibits TPA-induced apoptosis through nuclear factor-kappa B in NIH/3T3 cells. Toxicol. Lett. 146: 159-174 (2004)   DOI   ScienceOn
4 Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 3rd ed. Oxford University Press, Oxford, UK. pp. 246-350 (1999)
5 Gutteridge JM, Halliwell B. Free radicals and antioxidants in the year 2000. A historical look to the future. Ann. NY. Acad. Sci. 899: 136-147 (2000)
6 Shingu M, Oribe M, Todoroki T, Tatsukawa K, Tomo-oka K, Yasuda M, Nobunaga M. Serum factors from patients with systemic lupus erythematosus enhancing superoxide generation by normal neutrophils. J. Invest. Dermatol. 81: 212-215 (1983)   DOI   ScienceOn
7 Kolaja KL, Xu Y, Walborg EF Jr., Stevenson DE, Klaunig JE. Vitamin E modulation of dieldrin-induced hepatic focal lesion growth in mice. J. Toxicol. Environ. Health A. 53: 479-492 (1998)   DOI   ScienceOn
8 Flohe L, Gunzler WA. Assays of glutathione peroxidase. Method Enzymol. 105: 114-121 (1984)   DOI
9 Kuppusamy P, Zweier JL. Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation. J. Biol. Chem. 264: 9880-9884 (1989)
10 Nulton-Persson AC, Szweda LI. Modulation of mitochondrial function by hydrogen peroxide. J. Biol Chem. 276: 23357-23361 (2001)   DOI   ScienceOn
11 Taysi S, Polat F, Gul M, Sari RA, Bakan E. Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis. Rheumatol. Int. 21: 200-204 (2002)   DOI   ScienceOn
12 Casaril M, Corso F, Bassi A. Capra F, Gabrielli GB, Stanzial AM, Nicoli N, Corrocher R. Decreased activity of scavenger enzymes in human hepatocellular carcinoma, but not in liver metastases. Int. J. Clin. Lab. Res. 24: 94-97 (1994)   DOI
13 Esterbauer H. pp. 101-105. In: Free Radicals, Lipid Peroxidation and Cancer. McBrien DCH, Slater TF (eds). Academic press, New York, USA (1982)
14 Sarkar A, Bishayee A, Chatterjee M. Beta-carotene prevents lipid peroxidation and red blood cell membrane protein damage in experimental hepatocarcinogenesis. Cancer Biochem. Biophys. 15: 111-125 (1995)
15 Mittal A, Elmets CA, Katiyar SK. Dietary feeding of proanthocyanidins from grape seeds prevents photocarcinogenesis in SKH-1 hairless mice: relationship to decreased fat and lipid peroxidation. Carcinogenesis 24: 1379-1388 (2003)   DOI   ScienceOn
16 Pereira B, Bechara EJ, Mendonca JR, Curi R. Superoxide dismutase, catalase and gluthione peroxidase activities in the lymphoid organs and skeletal muscles of rats treated with dexamethasone. Cell Biochem. Funct. 17: 15-19(1999)   DOI   ScienceOn
17 Fridovich I. Quantitative aspects of production of superoxide anion radical by milk xanthine oxidase. J. Biol. Chem. 245: 4053-4057 (1970)
18 Jun CD, Pae HO, Kim YC, Jeong SJ, Yoo JC, Lee EJ, Choi BM, Chae SW, Park RK, Chung HT. Inhibition of nitric oxide synthesis by butanol fraction of the methanol extract of Ulmus davidiana in murine macrophages. J. Ethnopharmacol. 62: 129-135 (1998)   DOI   ScienceOn
19 Goldstein IM, Cerqueira M, Lind S, Kaplan HB. Evidence that the superoxide-generating system of human leukocytes is associated with the cell surface. J. Clin. Inverst. 59: 249-254 (1977)   DOI
20 Fisher DB, Kaufman, S. Tetrahydrobiopterin oxidation without hydroxylation catalyzed by rat liver phenylalanine hydroxylase. J. Biol. Chem. 248: 4300-4305 (1973)
21 Simon RH, Scoggin CH, Patterson D. Hydrogen peroxide causes the fatal injury to human fibroblasts exposed to oxygen radicals. J. Biol. Chem. 256: 7181-7186 (1981)
22 Nagini S, Manoharan S, Ramachandran CR. Lipid peroxidation and antioxidants in oral squamous cell carcinoma. Clin. Chim. Acta. 273: 95-98 (1998)   DOI   ScienceOn
23 Kim JP, Kim WG, Koshino H, Jung J, Yoo ID. Sesquiterpene o-naphthoquinones from the root bark of Ulmus davidiana. Phytochemistry 43: 425-430 (1996b)   DOI   ScienceOn
24 Lu YP, Lou YR, Yen P, Newmark HL, Mirochnitchenko OC, Inouye M. Enhanced skin carcinogenesis in transgenic mice with high expression of glutathione peroxidase or both glutathion peroxidase and superoxide dismutase. Cancer Res. 57: 1468-1474 (1997)
25 Lee MK, Kim YC. Five novel neuroprotective triterpene esters of Ulmus davidiana var.japonica. J. Nat. Prod. 64: 328-331 (2001)   DOI   ScienceOn
26 Salin ML, Day ED Jr., Crapo JD. Isolation and characterization of manganese-containing superoxide dismutase from rat liver. Arch. Biochem. Biophys. 187: 223-228 (1978)   DOI   ScienceOn
27 Jayashree G, Kurup Muraleedhara G, Sudaralal S. Antioxidant activity of Centella asiatica on lymphoma-bearing mice. Fitoterapia 74: 431-434 (2003)   DOI   ScienceOn
28 Mitchell JD, Gatt JA, Phillips TM, Houghton E, Rostron G, Wignall C. Cu/Zn superoxide dismutase free radicals and motoneuron disease. Lancet 342: 1051-1052 (1993)   DOI   ScienceOn
29 Aebi H. Catalase pp. 673-684. In: Methods of Enzymatic Analysis, 2nd. Vol. 2, Bergmeyer HU (ed.), Academic Press, New York, USA (1974)
30 Oberley TD, Oberley LW. Antioxidant enzyme levels in cancer. Histol Histopathol. 12: 525-535 (1997)
31 Caballero F, Gerez E, Oliveri L. Falcoff N, Batile A, Vazquez E. On the promoting action of tamoxifen in a model of hepatocarcinogenesis induced by p-dimethylaminoazobenzene in CF1 mice. Int. J. Biochem. Cell. Biol. 33: 681-690 (2001)   DOI   ScienceOn
32 Moody CS, Hassan HM. Mutagenicity of oxygen free radicals. Proc. Natl. Acad. Sci. USA 79: 2855-2859 (1982)
33 Ohkawa H, Chishi N, Yagi K. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal. Biochem, 95: 351-358 (1979)   DOI   ScienceOn
34 Mates JM, Perez-Gomez C, Nunez de, CI. Antioxidant enzymes and human diseases. Clin. Biochem. 32: 595-603 (1999)   DOI   ScienceOn
35 McCord JM, Fridovich I. Superoxide dismutase: Enzymatic function for erythrocuprein (hematocuprein), J. Biol. Chem. 244: 6049-6055 (1969)
36 Wenger FA, Kilian M, Mautsch I, Jacobi CA, Steiert A, Peter FJ, Guski H, Schimke I, Muller JM. Influence of octreotide on liver metastasis and hepatic lipid peroxidation in BOP-induced pancreatic cancer in Syrian hamsters. Pancreas 23: 266-272 (2001)   DOI   ScienceOn
37 Hong ND, Rho YS, Kim NJ, Kim JS. A study on efficacy of Ulmi cortex. Korean J. Pharmacogn. 21: 217-222 (1990)   과학기술학회마을
38 Kaneko N, Yasui H, Takada J, Suzuki K, Sakurai H. Orally administrated aluminum-maltolate complex enhances oxidative stress in the organs of mice. J. Inorganic Biochem. 98: 2022-2031(2004)   DOI   ScienceOn
39 Kim JP, Kim WG, Koshino H, Jung J, Yoo ID. Sesquiterpene o-naphthoquinones from the root bark of Ulmus davidiana. Phytochemistry 43: 425-430 (1996b)   DOI   ScienceOn
40 Fried R, Fried LW. Xanthine oxidase (xanthine dehydrogenase). pp. 644-649. In: Methods of Enzymatic Analysis, 2nd Vol. 2, Bergmeyer HU (ed.), Academic Press, New York, USA (1974)
41 De S, Chakraborty J, Chakraborty RN, Das S. Chemopreventive activity of quercetin during carcinogenesis in cervix uteri in mice. Phytother. Res. 14: 347-351 (2000)   DOI   ScienceOn
42 Batko J, Warchol T, Karon H. The activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase in erythrocytes of rats with experimental neoplastic disease. Acta Biochim. Pol. 43: 403-405 (1996)
43 Son YO, Lee KY, Choi KC, Chung Y, Kim JG, Jeon YM, Jang YS, Lee JC. Inhibitory effects of glycoprotein-120(G-120) from Ulmus davidiana Nakai on cell growth and activation of matrix metalloproteinases. Mol. Cells 18: 163-170 (2004)
44 Terada LS, Guidot DM, Leff JA, Willingham IR, Hanley ME, Piermattei D, Repine JE. Hypoxia injures endothelial cells by increasing endogenous xanthine oxidase activity. Proc. Natl. Acad. Sci. USA 89: 3362-3366 (1992)
45 Borrello S, De Leo ME, Galeotti T. Defective gene expression of Mn-SOD in cancer cells. Mol. Aspects Med. 14: 253-258 (1993)   DOI   ScienceOn
46 Han KJ, Lee KS, Kong KH, Cho SH. Separation and purification of substance having matrix metalloproteinase-9 inhibition effect in Ulmus davidiana Plancn. var. japonica Nakai. Anal. Sci. Technol. 16: 179-184 (2003)