Browse > Article
http://dx.doi.org/10.3339/jkspn.2019.23.2.67

Cell-derived Secretome for the Treatment of Renal Disease  

Kim, Michael W. (Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard)
Ko, In Kap (Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard)
Atala, Anthony (Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard)
Yoo, James J. (Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard)
Publication Information
Childhood Kidney Diseases / v.23, no.2, 2019 , pp. 67-76 More about this Journal
Abstract
Kidney disease is a major global health issue. Hemodialysis and kidney transplantation have been used in the clinic to treat renal failure. However, the dialysis is not an effective long-term option, as it is unable to replace complete renal functions. Kidney transplantation is the only permanent treatment for end-stage renal disease (ESRD), but a shortage of implantable kidney tissues limits the therapeutic availability. As such, there is a dire need to come up with a solution that provides renal functions as an alternative to the current standards. Recent advances in cell-based therapy have offered new therapeutic options for the treatment of damaged kidney tissues. Particularly, cell secretome therapy utilizing bioactive compounds released from therapeutic cells holds significant beneficial effects on the kidneys. This review will describe the reno-therapeutic effects of secretome components derived from various types of cells and discuss the development of efficient delivery methods to improve the therapeutic outcomes.
Keywords
Renal disease; Regenerative Medicine; Secretome therapy; Secretome delivery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Song N, Song N, Song N, Song N, Song N, Zhang T, et al. miR-21 Protects Against Ischemia/Reperfusion-Induced Acute Kidney Injury by Preventing Epithelial Cell Apoptosis and Inhibiting Dendritic Cell Maturation. Front Physiol 2018;9.
2 George SK, Abolbashari M, Jackson JD, Aboushwareb T, Atala A, Yoo JJ. Potential Use of Autologous Renal Cells from Diseased Kidneys for the Treatment of Renal Failure. PLOS ONE 2016;11:e0164997.   DOI
3 Dominguez JH, Liu Y, Gao H, Dominguez JM, Xie D, Kelly KJ. Renal Tubular Cell-Derived Extracellular Vesicles Accelerate the Recovery of Established Renal Ischemia Reperfusion Injury. J Am Soc Nephrol 2017;28:3533-44.   DOI
4 Drukker M, Katchman H, Katz G, Even-Tov Friedman S, Shezen E, Hornstein E, et al. Human Embryonic Stem Cells and Their Differentiated Derivatives Are Less Susceptible to Immune Rejection Than Adult Cells. Stem Cells 2006;24:221-9.   DOI
5 Koppen A van, Joles JA, Balkom BWM van, Lim SK, de Kleijn D, Giles RH, et al. Human Embryonic Mesenchymal Stem Cell-Derived Conditioned Medium Rescues Kidney Function in Rats with Established Chronic Kidney Disease. PLoS One San Franc 2012;7:e38746.   DOI
6 Lee PY, Chien Y, Chiou GY, Lin CH, Chiou CH, Tarng DC. Induced Pluripotent Stem Cells without c-Myc Attenuate Acute Kidney Injury via Downregulating the Signaling of Oxidative Stress and Inflammation in Ischemia-Reperfusion Rats. Cell Transplant 2012;21:2569-85.   DOI
7 Li LF, Liu YY, Yang CT, Chien Y, Twu NF, Wang ML, et al. Improvement of ventilator-induced lung injury by IPS cell-derived conditioned medium via inhibition of PI3K/Akt pathway and IP-10-dependent paracrine regulation. Biomaterials 2013;34:78-91.   DOI
8 Zeng L, Xu H, Chew T-L, Eng E, Sadeghi MM, Adler S, et al. HMG CoA reductase inhibition modulates VEGF-induced endothelial cell hyperpermeability by preventing RhoA activation and myosin regulatory light chain phosphorylation. FASEB J 2005;19:1845-52.   DOI
9 Urbich C, Aicher A, Heeschen C, Dernbach E, Hofmann W, Zeiher A, et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol 2005;39:733-42.   DOI
10 Tarng DC, Tseng WC, Lee PY, Chiou SH, Hsieh SL. Induced Pluripotent Stem Cell-Derived Conditioned Medium Attenuates Acute Kidney Injury by Downregulating the Oxidative Stress-Related Pathway in Ischemia-Reperfusion Rats. Cell Transplant 2016;25:517-30.   DOI
11 Cho KS, Ko IK, Yoo JJ. Bioactive Compounds for the Treatment of Renal Disease. Yonsei Med J 2018;59:1015-25.   DOI
12 Stenvinkel P, Wadstrom J, Bertram T, Detwiler R, Gerber D, Brismar TB, et al. Implantation of Autologous Selected Renal Cells in Diabetic Chronic Kidney Disease Stages 3 and 4-Clinical Experience of a "First in Human" Study. Kidney Int Rep 2016;1:105-13.   DOI
13 Yamaleyeva LM, Guimaraes-Souza NK, Krane LS, Agcaoili S, Gyabaah K, Atala A, et al. Cell Therapy with Human Renal Cell Cultures Containing Erythropoietin-Positive Cells Improves Chronic Kidney Injury. STEM CELLS Transl Med 2012;1:373-83.   DOI
14 Maeshima A, Nakasatomi M, Nojima Y. Regenerative Medicine for the Kidney: Renotropic Factors, Renal Stem/Progenitor Cells, and Stem Cell Therapy. BioMed Res Int 2014;2014:1-10.
15 Tran C, Damaser MS. Stem cells as drug delivery methods: Application of stem cell secretome for regeneration. Adv Drug Deliv Rev 2015;82-83:1-11.   DOI
16 Beer L, Mildner M, Ankersmit HJ. Cell secretome based drug substances in regenerative medicine: when regulatory affairs meet basic science. Ann Transl Med 2017; 5:170.   DOI
17 Ko IK, Yoo JJ, Atala A. Regenerative Medicine Approaches for the Kidney, Principles of Regenerative Medicine (Third Edition), 2019, 1165-1177. Academic Press. In: Principles of Regenerative Medicine (Third Edition).
18 Moon KH, Ko IK, Yoo JJ, Atala A. Kidney diseases and tissue engineering. Methods 2016;99:112-9.   DOI
19 Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med 2011;9:29.   DOI
20 Kim HO, Choi S-M, Kim H-S. Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Eng Regen Med 2013;10:93-101.   DOI
21 Sun DZ, Abelson B, Babbar P, Damaser MS. Harnessing the mesenchymal stem cell secretome for regenerative urology. Nat Rev Urol 2019;16:363-75.   DOI
22 Pittenger MF. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 1999;284:143-7.   DOI
23 Tsuji K, Kitamura S, Wada J. Secretomes from Mesenchymal Stem Cells against Acute Kidney Injury: Possible Heterogeneity. Stem Cells International 2018;1-14.
24 Maguire G. Stem cell therapy without the cells. Commun Integr Biol 2013;6.
25 Chen L, Tredget EE, Wu PYG, Wu Y. Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing. PLoS One 2008;3:e1886.   DOI
26 Ciapetti G, Baldini DG and N. The Combined Use of Mesenchymal Stromal Cells and Scaffolds for Bone Repair. Curr Pharm Des 2012;18:1796-820.   DOI
27 Li W, Enomoto M, Ukegawa M, Hirai T, Sotome S, Wakabayashi Y, et al. Subcutaneous Injections of Platelet-Rich Plasma into Skin Flaps Modulate Proangiogenic Gene Expression and Improve Survival Rates: Plast Reconstr Surg 2012;129:858-66.   DOI
28 Waters R, Pacelli S, Maloney R, Medhi I, Ahmed RPH, Paul A. Stem cell secretome-rich nanoclay hydrogel: a dual action therapy for cardiovascular regeneration. Nanoscale 2016;8:7371-6.   DOI
29 Yim HE, Kim DS, Chung HC, Shing B, Moon KH, George SK, et al. Controlled Delivery of Stem Cell-Derived Trophic Factors Accelerates Kidney Repair After Renal Ischemia-Reperfusion Injury in Rats. Stem Cells Transl Med 2019;8:959-70.   DOI
30 Patel AN, Selzman CH, Kumpati GS, McKellar SH, Bull DA. Evaluation of autologous platelet rich plasma for cardiac surgery: outcome analysis of 2000 patients. J Cardiothorac Surg 2016;11:62.   DOI
31 Nassar W, El-Ansary M, Sabry D, Mostafa MA, Fayad T, Kotb E, et al. Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater Res 2016;20.
32 Torres Crigna A, Daniele C, Gamez C, Medina Balbuena S, Pastene DO, Nardozi D, et al. Stem/Stromal Cells for Treatment of Kidney Injuries With Focus on Preclinical Models. Front Med 2018;5.
33 Takahashi M, Li T-S, Suzuki R, Kobayashi T, Ito H, Ikeda Y, et al. Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am J Physiol-Heart Circ Physiol 2006;291:H886-93.   DOI
34 Senger DR. Vascular Endothelial Growth Factor: Much More than an Angiogenesis Factor. Mol Biol Cell 2010;21:377-9.   DOI
35 Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:1306-9.   DOI
36 Pires AO, Mendes-Pinheiro B, Teixeira FG, Anjo SI, Ribeiro-Samy S, Gomes ED, et al. Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis. Stem Cells Dev 2016;25:1073-83.   DOI
37 Bruno S, Porta S, Bussolati B. Extracellular vesicles in renal tissue damage and regeneration. Eur J Pharmacol 2016;790:83-91.   DOI
38 Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, et al. Local Delivery of Marrow-Derived Stromal Cells Augments Collateral Perfusion Through Paracrine Mechanisms. Circulation 2004;109:1543-9.   DOI
39 Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol- Ren Physiol 2007;292:F1626-35.   DOI
40 Rota C, Imberti B, Pozzobon M, Piccoli M, De Coppi P, Atala A, et al. Human Amniotic Fluid Stem Cell Preconditioning Improves Their Regenerative Potential. Stem Cells Dev 2012;21:1911-23.   DOI
41 Bai L, Lennon D, Eaton V, Maier K, Caplan A, Miller S, et al. Human Bone Marrow-derived Mesenchymal Stem Cells Induce Th2-Polarized Immune Response and Promote Endogenous Repair in Animal Models of Multiple Sclerosis. Glia 2009;57:1192-203.   DOI
42 Cantaluppi V, Medica D, Mannari C, Stiaccini G, Figliolini F, Dellepiane S, et al. Endothelial progenitor cell-derived extracellular vesicles protect from complement-mediated mesangial injury in experimental anti-Thy1.1 glomerulonephritis. Nephrol Dial Transplant 2015;30:410-22.   DOI
43 Duffy MM, Pindjakova J, Hanley SA, McCarthy C, Weidhofer GA, Sweeney EM, et al. Mesenchymal stem cell inhibition of T-helper 17 cell- differentiation is triggered by cell-cell contact and mediated by prostaglandin E2 via the EP4 receptor. Eur J Immunol 2011;41:2840-51.   DOI
44 Luz-Crawford P, Djouad F, Toupet K, Bony C, Franquesa M, Hoogduijn MJ, et al. Mesenchymal Stem Cell-Derived Interleukin 1 Receptor Antagonist Promotes Macrophage Polarization and Inhibits B Cell Differentiation. STEM CELLS 2016;34:483-92.   DOI
45 Sharma R, Kinsey GR. Regulatory T cells in acute and chronic kidney diseases. Am J Physiol-Ren Physiol 2018;314:F679-98.   DOI
46 Yang Z, von Ballmoos MW, Faessler D, Voelzmann J, Ortmann J, Diehm N, et al. Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells. Atherosclerosis 2010;211:103-9.   DOI
47 Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC, et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNAdependent reprogramming of resident renal cells. Kidney Int 2012;82:412-27.   DOI
48 Xing L, Cui R, Peng L, Ma J, Chen X, Xie R-J, et al. Mesenchymal stem cells, not conditioned medium, contribute to kidney repair after ischemia-reperfusion injury. Stem Cell Res Ther 2014;5.
49 Da Silva AF, Silva K, Reis LA, Teixeira VPC, Schor N. Bone Marrow-Derived Mesenchymal Stem Cells and Their Conditioned Medium Attenuate Fibrosis in an Irreversible Model of Unilateral Ureteral Obstruction. Cell Transplant 2015;24:2657-66.   DOI
50 Abedi A, Azarnia M, Zahvarehy MJ, Foroutan T, Golestani S. Effect of Different Times of Intraperitoneal Injections of Human Bone Marrow Mesenchymal Stem Cell Conditioned Medium on Gentamicin-Induced Acute Kidney Injury. Urol J 2016;13:2707-16.
51 Liu B, Ding F-X, Liu Y, Xiong G, Lin T, He D-W, et al. Human umbilical cord-derived mesenchymal stem cells conditioned medium attenuate interstitial fibrosis and stimulate the repair of tubular epithelial cells in an irreversible model of unilateral ureteral obstruction: Conditioned medium in renal fibrosis. Nephrology 2018;23:728-36.   DOI
52 Bollini S, Gentili C, Tasso R, Cancedda R. The Regenerative Role of the Fetal and Adult Stem Cell Secretome. J Clin Med 2013;2:302-27.   DOI
53 Zern BJ, Chu H, Wang Y. Control Growth Factor Release Using a Self-Assembled [polycation:heparin] Complex. PLoS ONE 2010;5:e11017.   DOI
54 Pawitan JA. Prospect of Stem Cell Conditioned Medium in Regenerative Medicine. BioMed Res Int N Y 2014;14.
55 Yde P, Mengel B, Jensen MH, Krishna S, Trusina A. Modeling the NF-${\kappa}B$ mediated inflammatory response predicts cytokine waves in tissue. BMC Syst Biol 2011;5:115.   DOI
56 Khosravi A, Cutler CM, Kelly MH, Chang R, Royal RE, Sherry RM, et al. Determination of the Elimination Half-Life of Fibroblast Growth Factor-23. J Clin Endocrinol Metab 2007;92:2374-7.   DOI
57 Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nat Biotechnol 2001;19:1029-34.   DOI
58 Rad F, Pourfathollah AA, Yari F, Mohammadi S, Kheirandish M. Microvesicles preparation from mesenchymal stem cells. Med J Islam Repub Iran 2016;30:398.
59 Riazifar M, Pone EJ, Lotvall J, Zhao W. Stem Cell Extracellular Vesicles: Extended Messages of Regeneration. Annu Rev Pharmacol Toxicol 2017;57:125-54.   DOI
60 Yanez-Mo M, Siljander PR-M, Andreu Z, Zavec AB, Borras FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015;4:27066.   DOI
61 Record M, Silvente-Poirot S, Poirot M, Wakelam MJO. Extracellular vesicles: lipids as key components of their biogenesis and functions. J Lipid Res 2018;59:1316-24.   DOI
62 Colombo M, Raposo G, Thery C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annu Rev Cell Dev Biol 2014;30:255-89.   DOI
63 Yoo KW, Li N, Makani V, Singh RN, Atala A, Lu B. Large-Scale Preparation of Extracellular Vesicles Enriched with Specific microRNA. Tissue Eng Part C Methods 2018;24:637-44.   DOI
64 Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol 2013;113:1-11.   DOI
65 Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, et al. Mesenchymal Stem Cell-Derived Microvesicles Protect Against Acute Tubular Injury. J Am Soc Nephrol 2009;20:1053-67.   DOI
66 Nargesi AA, Lerman LO, Eirin A. Mesenchymal stem cell-derived extracellular vesicles for renal repair. Curr Gene Ther 2017;17:29-42.
67 Tomasoni S, Longaretti L, Rota C, Morigi M, Conti S, Gotti E, et al. Transfer of Growth Factor Receptor mRNA Via Exosomes Unravels the Regenerative Effect of Mesenchymal Stem Cells. Stem Cells Dev 2013;22:772-80.   DOI
68 Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C, et al. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc-Eur Ren Assoc 2011;26:1474-83.
69 Reis LA, Borges FT, Simoes MJ, Borges AA, Sinigaglia-Coimbra R, Schor N. Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PloS One 2012;7:e44092.   DOI
70 Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L, et al. Microvesicles Derived from Mesenchymal Stem Cells Enhance Survival in a Lethal Model of Acute Kidney Injury PLoS ONE 2012;7:33115.   DOI
71 Eirin A, Riester SM, Zhu XY, Tang H, Evans JM, O'Brien D, et al. MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells. Gene 2014;551:55-64.   DOI
72 Ferguson SW, Wang J, Lee CJ, Liu M, Neelamegham S, Canty JM, et al. The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep 2018;8.
73 Lindoso RS, Collino F, Bruno S, Araujo DS, Sant'Anna JF, Tetta C, et al. Extracellular Vesicles Released from Mesenchymal Stromal Cells Modulate miRNA in Renal Tubular Cells and Inhibit ATP Depletion Injury. Stem Cells Dev 2014;23:1809-19.   DOI
74 Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ 1999;6:99-104.   DOI
75 Chen F-M, Zhang M, Wu Z-F. Toward delivery of multiple growth factors in tissue engineering. Biomaterials 2010;31:6279-308.   DOI
76 Ko IK, Ju YM, Chen T, Atala A, Yoo JJ, Lee SJ. Combined systemic and local delivery of stem cell inducing/recruiting factors for in situ tissue regeneration. FASEB J 2012;26:158-68.   DOI
77 Hule RA, Nagarkar RP, Altunbas A, Ramay HR, Branco MC, Schneider JP, et al. Correlations between structure, material properties and bioproperties in self-assembled $\beta$-hairpin peptide hydrogels. Faraday Discuss 2008;139:251.   DOI
78 Bakota EL, Wang Y, Danesh FR, Hartgerink JD. Injectable Multidomain Peptide Nanofiber Hydrogel as a Delivery Agent for Stem Cell Secretome. Biomacromolecules 2011;12:1651-7.   DOI
79 Wang Y, Bakota E, Chang BHJ, Entman M, Hartgerink JD, Danesh FR. Peptide Nanofibers Preconditioned with Stem Cell Secretome Are Renoprotective. J Am Soc Nephrol 2011;22:704-17.   DOI
80 Meng X-M, Huang XR, Xiao J, Chung ACK, Qin W, Chen H, et al. Disruption of Smad4 impairs TGF-$\beta$/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro. Kidney Int 2012;81:266-79.   DOI
81 Lu J, Clark AG. Impact of microRNA regulation on variation in human gene expression. Genome Res. 2012;22:1243-54.   DOI
82 Wang B, Yao K, Huuskes BM, Shen H-H, Zhuang J, Godson C, et al. Mesenchymal Stem Cells Deliver Exogenous MicroRNA-let7c via Exosomes to Attenuate Renal Fibrosis. Mol Ther 2016;24:1290-301.   DOI
83 Hu H, Hu S, Xu S, Gao Y, Zeng F. miR-29b regulates Ang II-induced EMT of rat renal tubular epithelial cells via targeting PI3K/AKT signaling pathway. Int J Mol Med Athens 2018;42453-60.