Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.2.137

Undaria pinnatifida Extracts and Alginic Acid Attenuated Muscle Atrophy in TNF-α Induced Myoblast Cells through MAFbx Signaling Cascade  

Choi, Sang Yoon (Korea Food Research Institute)
Kim, Mina (Korea Food Research Institute)
Lee, Hyun Hee L. (Korea Food Research Institute)
Hur, Jinyoung (Korea Food Research Institute)
Publication Information
Journal of Life Science / v.31, no.2, 2021 , pp. 137-143 More about this Journal
Abstract
Muscle atrophy refers to a decrease in muscle cells due to damage to muscle fibers. It is reported that muscle atrophy is caused by heart disease, diabetes, and other chronic diseases related to aging. The purpose of this study is to reveal the inhibitory effects of seaweed extracts, which are widely consumed in Korea, and alginic acid on muscle cell damage in muscle atrophy and regeneration models. We found that seaweed extracts (U) and alginic acid (A) attenuated TNF-α-induced muscle atrophy in differentiated C2C12 myoblast cells and inhibited muscle atrophy markers such as MuRF1 and MAFbx. In addition, U and A also regulated ubiquitination marker FoxO1 protein. To confirm the muscle regeneration effect in animal tissue, cardiotoxin (CTX) was used for the regeneration model. Six hours after CTX injection, gastrocnemius muscle volume was increased compared to control. Otherwise, the muscle volume of the U and A treatment groups was not changed. U and A also upregulated regeneration markers MyHC and PGC-1α in a CTX mouse model. These results indicate that seaweed extracts and alginic acid, a seaweed component, are applicable to senile sarcopenia by inhibiting muscle loss and promoting muscle regeneration.
Keywords
Alginic acid; MAFbx signaling; muscle atrophy; TNF-${\alpha}$. Myoblast; Undaria pinnatifida;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Puigserver, P. and Spiegelman, B. M. 2003. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24, 78-90.   DOI
2 Rolland, Y., Czerwinski, S., Abellan Van Kan, G., Morley, J. E., Cesari, M., Onder, G., Woo, J., Baumgartner, R., Pillard, F., Boirie, Y., Chumlea, W. M. C. and Vellas, B. 2008. Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J. Nutr. Health Aging 12, 433-450.   DOI
3 Rosenberg, I. H. 1997. Sarcopenia: origins and clinical relevance. J. Nutr. 127, 990s-991s.   DOI
4 Schiaffino, S., Dyar, K. A., Ciciliot, S., Blaauw, B. and Sandri, M. 2013. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 280, 4294-4314.   DOI
5 Bonaldo, P. and Sandri, M. 2013. Cellular and molecular mechanisms of muscle atrophy. Dis. Models Mech. 6, 25-39.   DOI
6 Guardiola, O., Andolfi, G., Tirone, M., Iavarone, F., Brunelli, S. and Minchiotti, G. 2017. Induction of acute skeletal muscle regeneration by cardiotoxin injection. J. Vis. Exp. 119, e54515, doi:10.3791/54515.   DOI
7 Kong, R., Shon, M. Y., Seo, Y. S, Kang, O. H., Zhou, T., Kim, D. Y., Choi, S. H. and Kwon, D. Y. 2016. The anti-diabetic effects and nephroprotective effect of black ginseng prosapogenin extract in streptozotocin-induced mice. Kor. J. Medicinal Crop Sci. 24, 115-120.   DOI
8 Hardy, D., Besnard, A., Latil, M., Jouvion, G., Briand, D., Thepenier, C., Pascal, Q., Guguin, A., Gayraud-Morel, B., Cavaillon, J. M., Tajbakhsh, S., Rocheteau, P. and Chretien, F. 2016. Comparative study of injury models for studying muscle regeneration in mice. PLoS One 11, e0147198. doi: 10.1371/journal.pone.0147198.   DOI
9 Kandarian, S. C. and Jackman, R. W. 2006. Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 33, 155-165.   DOI
10 Khan, M. N., Choi, J. S., Lee, M. C., Kim, E., Nam, T. J., Fujii, H. and Hong, Y. K. 2008. Anti-inflammatory activities of methanol extracts from various seaweed species. J. Environ. Biol. 29, 465-469.
11 Muhamad, I. I., Zulkifli, N., Selvakumaran, S. A. and Lazim, N. A. M. 2019. Bioactive algal-derived polysaccharides: multi-functionalization, therapeutic potential and biomedical applications. Curr. Pharm. Des. 25, 1147-1162.   DOI
12 Lang, C. H., Frost, R. A., Nairn, A. C., MacLean, D. A. and Vary, T. C. 2002. TNF-alpha impairs heart and skeletal muscle protein synthesis by altering translation initiation. Am. J. Physiol. Endocrinol. Metab. 282, E336-347.   DOI
13 Lepper, C., Partridge, T. A. and Fan, C. M. 2011. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138, 3639-3646.   DOI
14 Baumgartner, R. N., Koehler, K. M., Gallagher, D., Romero, L., Heymsfield, S. B., Ross, R. R. and Lindeman, R. D. 1998. Epidemiology of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 147, 755-763.   DOI
15 Wells, L., Edwards, K. A. and Bernstein, S. I. 1996. Myosin heavy chain isoforms regulate muscle function but not myofibril assembly. EMBO J. 15, 4454-4459.   DOI
16 Taboada, C., Millan, R. and Miguez, I. 2013. Evaluation of marine algae Undaria pinnatifida and Porphyra purpurea as a food supplement: composition, nutritional value and effect of intake on intestinal, hepatic and renal enzyme activities in rats. J. Sci. Food Agric. 93, 1863-1868.   DOI
17 Volpi, E. and Rasmussen, B. B. 2000. Nutrition and muscle protein metabolism in the elderly. Diabetes Nutr. Metab. 13, 99-107.
18 Wang, S. K., Li, Y., White, W. L. and Lu, J. 2014. Extracts from New zealand undaria pinnatifida containing fucoxanthin as potential functional biomaterials against cancer in vitro. J. Funct. Biomater. 5, 29-42.   DOI
19 Li, J., Cai, C., Yang, C., Li, J., Sun, T. and Yu, G. 2019. Recent advances in pharmaceutical potential of brown algal polysaccharides and their derivatives. Curr. Pharm. Des. 25, 1290-1311.   DOI
20 Montesano, A., Luzi, L., Senesi, P., Mazzocchi, N. and Terruzzi, I. 2013. Resveratrol promotes myogenesis and hypertrophy in murine myoblasts. J. Transl. Med. 11, 310. doi: 10.1186/1479-5876-11-310.   DOI
21 Chen, Y. M., Tsai, Y. H., Tsai, T. Y., Chiu, Y. S., Wei, L., Chen, W. C. and Huang, C. C. 2014. Fucoidan supplementation improves exercise performance and exhibits anti-fatigue action in mice. Nutrients 7, 239-252.   DOI
22 Choi, J. S., Bae, H. J., Kim, Y. C., Park, N. H., Kim, T. B., Choi, Y. J., Choi, E. Y., Park S. M. and Choi, I. S. 2008. Nutritional composition and biological activities of the methanol extracts of sea mustard (Undaria pinnatifida) in market. J. Life Sci. 18, 387-394.   DOI
23 Glass, D. J. 2003. Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat. Cell Biol. 5, 87-90.   DOI
24 Fong, Y., Moldawer, L. L., Marano, M., Wei, H., Barber, A., Manogue, K., Tracey, K. J., Kuo, G., Fischman, D. A. and Cerami, A. 1989. Cachectin/TNF or IL-1 alpha induces cachexia with redistribution of body proteins. Am. J. Physiol. 256, R659-665.   DOI
25 Garry, G. A., Antony, M. L. and Garry, D. J. 2016. Cardiotoxin induced injury and skeletal muscle regeneration. Methods Mol. Biol. 1460, 61-71.   DOI