Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.1.17

Antioxidant Activities of Peucedanum insolens Kitagawa Root Extracts and Their Anti-inflammatory Effects on LPS-treated RAW264.7 Cells  

Kim, Jin-Ik (Department of Bio-Health Sciences, Changwon National University)
Choi, Yong-Won (Department of Bio-Health Sciences, Changwon National University)
Choi, Geun-June (Department of Bio-Health Sciences, Changwon National University)
Kang, Ji-An (Department of Bio-Health Sciences, Changwon National University)
Lee, In-Young (Department of Bio-Health Sciences, Changwon National University)
Narantuya, Nandintsetseg (Department of Bio-Health Sciences, Changwon National University)
Oh, Myong-Seok (Department of Bio-Health Sciences, Changwon National University)
Cho, Sik-Jae (Saewoori International Patent & Law Firm)
Moon, Ja-Young (Department of Bio-Health Sciences, Changwon National University)
Publication Information
Journal of Life Science / v.31, no.1, 2021 , pp. 17-27 More about this Journal
Abstract
This study was performed to investigate the antioxidant activities of subfractions of Peucedanum insolens Kitagawa root in various organic solvents and their anti-inflammatory effects on LPS-treated RAW264.7 cells. First, P. insolens Kitagawa roots were dried at room temperature for one week, chopped, and extracted with 70% ethanol. The resulting extracts were successively sub-fractionated with hexane, chloroform, ethyl acetate, and water. The antioxidant potential of the fractions was evaluated using a DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging assay and by measuring total polyphenol and flavonoid contents. The anti-inflammatory potency of the fractions was evaluated by measuring the inhibition levels of the expressions of inflammatory-mediated genes and proteins (e.g., iNOS, COX-2, IL-1β, and IL-6) in RAW264.7 cells. The results clearly showed that the ethyl acetate fraction of the P. insolens Kitagawa root contained relatively high total flavonoid (34.08±1.68 ㎍ of quercetin equivalents per mg) and total polyphenol (154.1±3.2 ㎍ of gallic acid equivalents per mg) contents. The DPPH assay results showed that the P. insolens Kitagawa root possessed strong free radical scavenging activity in the ethyl acetate fraction. Both the ethyl acetate and hexane fractions showed strong inhibitory potencies to nitric oxide production induced by lipopolysaccharide (1 ㎍/ml) treatment for 24 hr in RAW264.7 cells. The results also showed that both the hexane and ethyl acetate fractions of the P. insolens Kitagawa root strongly inhibited mRNA levels of iNOS, IL-1β, and IL-6, which were overexpressed by LPS treatment for 24 hr in the RAW264.7 cells. These results suggest that P. insolens Kitagawa root may contain compounds that possess strong potency for anti-inflammatory activity. Further studies are needed to discover more detailed modes of action of P. insolens Kitagawa root fractions against inflammation modulation, such as the regulation of cytokine signaling and inflammatory signaling pathways.
Keywords
Inflammatory-mediated genes; Peucedanum insolens Kitagawa; RAW264.7; total flavonoid; total polyphenol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Khan, S., Choi, R. J., Shehzad, O., Kim, H. P., Islam, M. N., Choi, J. S. and Kim, Y. S. 2013. Molecular mechanism of capillarisin-mediated inhibition of MyD88/TIRAP inflammatory signaling in in vitro and in vivo experimental models. J. Ethnopharmacol. 145, 626-637.   DOI
2 Khan, S., Shin, E. M., Choi, R. J., Jung, Y. H., Kim, J. W., Tosun, A. and Kim, Y. S. 2011. Suppression of LPS-induced inflammatory and NF-κB responses by anomalin in RAW 264.7 macrophages. J. Cell Biochem. 112, 2179-2188.   DOI
3 Kim, Y. H., Lee, S. H., Lee, J. Y., Choi, S. W., Park, J. W. and Kwon, T. K. 2004. Triptolide inhibits murine-inducible nitric oxide synthase expression by down-regulating lipopolysaccharide-induced activity of nuclear factor-κB and c-Jun NH 2-terminal kinase. Eur. J. Pharmacol. 494, 1-9.   DOI
4 Kroncke, K. D., Fehsel, K. and Kolb-Bachofen, V. 1998. Inducible nitric oxide synthase in human diseases. Clin. Exp. Immunol. 113, 147-156.   DOI
5 Losada-Barreiro, S. and Bravo-Diaz, C. 2017. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. Eur. J. Med. Chem. 133, 379-402.   DOI
6 Madamanchi, N. R., Vendrov, A. and Runge, M. S. 2005. Oxidative stress and vascular disease. Arter. Thromb. Vasc. Biol. 25, 29-38.   DOI
7 Maione, F., Russo, R., Khan, H. and Mascolo, N. 2016. Medicinal plants with anti-inflammatory activities. Nat. Prod. Res. 30, 13431352.
8 Mercurio, F. and Manning, A. M. 1999. Multiple signals converging on NF-κB. Curr. Opin. Cell Biol. 11, 226-232.   DOI
9 Mills, E. L. and O'Neill, L. A. 2016. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur. J. Immunol. 46, 13-21.   DOI
10 Mordan, L. J., Burnett, T. S., Zhang, L. X., Tom, J. and Cooney, R. V. 1993. Inhibitors of endogenous nitrogen oxide formation block the promotion of neoplastic transformation in C3H 10 T1/2 fibroblasts. Carcinogenesis 14, 1555-1559.   DOI
11 Nam, J. Y. and Ryu, K. S. 1975. Pharmacognostical Studies on Korean 'Bang Poong'. Kor. J. Pharmacog. 6, 151-159
12 Niu, X., Xing, W., Li, W., Fan, T., Hu, H. and Li, Y. 2012. Isofraxidin exhibited anti-inflammatory effects in vivo and inhibited TNF-α production in LPS-induced mouse peritoneal macrophages in vitro via the MAPK pathway. Int. Immunopharmacol. 14, 164-171.   DOI
13 Oberoi, H. S. and Sandhu, S. K. 2015. Therapeutic and nutraceutical potential of bioactive compounds extracted from fruit residues AU-Babbar, Neha. Crit. Rev. Food Sci. Nutr. 55, 319-337.   DOI
14 Rahman, K. Studies on free radicals, antioxidants, and cofactors. 2007. Clin. Interv. Aging 2, 219-236.
15 Ohshima, H. and Bartsch, H. 1994. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat. Res. 305, 253-264.   DOI
16 Pan, S. Y., Zhou, S. F., Gao, S. H., Yu, Z. L., Zhang, S. F., Tang, M. K., Sun, J. N., Ma, D. L., Han, Y. F., Fong, W. F. and Ko, K. M. 2013. New perspectives on how to discover drugs from herbal medicines: CAM's outstanding contribution to modern therapeutics. Evid. Based Complement. Alternat. Med. 2013, 627375-627401.
17 Perkins, N. D. 2000. The REL/NF-κB family: Friend and foe. Trends Biochem. Sci. 25, 434-440.   DOI
18 Rajapakse, N., Kim, M. M., Mendis, E. and Kim, S. K. 2008. Inhibition of inducible nitric oxide synthase and cyclooxy-genase-2 in lipopolysaccharide-stimulated RAW264. 7 cells by carboxybutyrylated glucosamine takes place via downregulation of mitogen-activated protein kinase-mediated nuclear factor-κB signaling. Immunology 123, 348-357.   DOI
19 Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I. and Bahorun, T. 2005. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res. 579, 200-213.   DOI
20 Singleton, V. L. and Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, Am. J. Enol. Vitic. 16, 144-158.
21 Takamata, A. 1992. Effect of vagotomy on cardiovascular adjustment to hyperthermia in rats. Jpn. J. Physiol. 42, 641-652.   DOI
22 Tapiero, H., Tew, K.D., Ba, N. and Mathe, G. 2002. Polyphenols: do they play a role in the prevention of human pathologies? Biomed. Pharmacother. 56, 200-207.   DOI
23 Tungmunnithum, D., Thongboonyou, A., Pholboon, A. and Yangsabai, A. 2018. Flavonoids and other phenolic com pounds from medicinal plants for pharmaceutical and med ical aspects: An overview. Medicines 5, 93.   DOI
24 Wadsworth, T. L. and Koop, D. R. 1999. Effects of wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages. Biochem. Pharmacol. 57, 941-949.   DOI
25 Yoshino, S., Sasatomi, E. and Ohsawa, M. 2000. Bacterial lipopolysaccharide acts as an adjuvant to induce autoimmune arthritis in mice. Immunobiology 99, 607-614.
26 Wang, X. and Lau, H. 2006. Prostaglandin E2 potentiates the immunologically stimulated histamine release from human peripheral blood-derived mast cells through EP1/EP3 receptors. Allergy 61, 503-506.   DOI
27 Yang, C. S., Landau, J. M., Huang, M. T. and Newmark, H. L. 2001. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr. 21, 381-406.   DOI
28 Yeom, M., Park, J., Lim, C., Sur, B., Lee, B., Han, J. J., Choi, H. D., Lee, H. and Hahm, D. H. 2015. Glucosylceramide attenuates the inflammatory mediator expression in lipopolysaccharide-stimulated RAW264. 7 cells. Nutr. Res. 35, 241-250.   DOI
29 Bendary, E., Francis, R. R., Ali, H. M. G., Sarwat, M. I. and El Hady, S. 2013. Antioxidant and structure-activity relationships (SARs) of some phenolic and anilines compounds. Ann. Agric. Sci. 58, 173-181.   DOI
30 Agrawal, S., Kulkarni, G. T. and Sharma, V. N. 2011. A comparative study on the antioxidant activity of methanolic extracts of Terminalia paniculata and Madhuca longifolia. Free Radic. Antiox. 1, 62-68.
31 Bertolini, A., Ottani, A. and Sandrini, M. 2002. Selective COX-2 inhibitors and dual acting anti-inflammatory drugs: critical remarks. Curr. Med. Chem. 9, 1033-1043.   DOI
32 Brand-Williams, W., Cuvelier, M. E. and Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci. Technol. 28, 25-30.   DOI
33 Brune, B., Dehne, N., Grossmann, N., Jung, M., Namgaladze, D., Schmid, T., Von Knethen, A. and Weigert, A. 2013. Redox control of inflammation in macrophages. Antioxid. Redox Signal 19, 595-637.   DOI
34 Davis, D. W. 1947. Determination of flavonones in citrus juice. Anal. Chem. 19, 46-48.   DOI
35 Chi, H. J. and Han, D. S. 1976. New or Noteworthy Medicinal Plants from Korea (II). Kor. J. Pharmacog. 7, 69-71.
36 Chi, H. J. and Kim, H. S. 1981. Coumarins from the Root of Peucedanum insolens Kitagawa. Kor. J. Pharmacog. 12, 79-81.
37 Chi, H. J. and Kim, H. S. 1982. Pharmacognostical Studies on the Root of Peucedanum insolens Kitagawa (II). Kor. J. Pharmacog. 13, 48-48
38 Han, S. Y., Yi, Y. S., Jeong, S. G., Hong, Y. H., Choi, K. J., Hossain, M. A., Hwang, H., Rho, H. S., Lee, J., Kim, J. H. and Cho, J. Y. 2018. Ethanol extract of Lilium bulbs plays an antiinflammatory role by targeting the IKK-mediated NF-κB pathway in macrophages. Am. J. Chin. Med. 46, 12811296.
39 Choi, Y. H., Kim, G. Y. and Lee, H. H. 2014. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW264.7 macrophages through toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB signaling pathways. Drug Des. Devel. Ther. 8, 1941-1953.   DOI
40 Cote, J., Caillet, S., Doyon, G., Sylvain, J. F. and Lacroix, M. 2010. Bioactive compounds in cranberries and their biological properties. Crit. Rev. Food Sci. Nutr. 50, 666-679.   DOI
41 Du, Z., Liu, H., Zhang, Z. and Li, P. 2013 Antioxidant and anti-inflammatory activities of Radix Isatidis polysaccharide in murine alveolar macrophages. Int. J. Biol. Macromol. 58, 329-335.   DOI
42 Goraca, A., Huk-Kolega, H., Kleniewska, P., PiechotaPolanczyk, A. and Skibska, B. 2013. Effects of lipoic acid on spleen oxidative stress after LPS administration. Pharmacol. Rep. 65, 179-186.   DOI
43 Han, J. M., Lee, E. K., Gong, S. Y., Sohng, J. K., Kang, Y. J. and Jung, H. J. 2019. Sparassis crispa exerts antiinflammatory activity via suppression of TLR-mediated NFκ B and MAPK signaling pathways in LPS-induced RAW264.7 macrophage cells. J. Ethnopharmacol. 231, 1018.
44 Hwang, Y. J., Lee, E. J., Kim, H. R. and Hwang, K. A. 2013. In vitro antioxidant and anticancer effects of solvent fractions from Prunella vulgaris var lilacina. BMC Complement. Altern. Med. 13, 310.   DOI
45 Heo, S. J., Jang, J., Ye, B. R., Kim, M. S., Yoon, W. J., Oh, C., Kang, D. H., Lee, J. H., Kang, M. C. and Jeon, Y. J. 2014. Chromene suppresses the activation of inflammatory mediators in lipopolysaccharide-stimulated RAW264.7 cells. Food Chem. Toxicol. 67, 169-175.   DOI
46 Hewett, J. A. and Roth, R. A. 1993. Hepatic and extrahepatic pahtobiology of bacterial lipopolysaccharides. Pharmacol. Rev. 45, 382-411.