Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.4.421

Portulaca oleracea L. Extract Lowers Postprandial Hyperglycemia by Inhibiting Carbohydrate-digesting Enzymes  

Park, Jae-Eun (Department of Food Science and Nutrition, Pusan National University)
Han, Ji-Sook (Department of Food Science and Nutrition, Pusan National University)
Publication Information
Journal of Life Science / v.28, no.4, 2018 , pp. 421-428 More about this Journal
Abstract
Postprandial hyperglycemia plays an important role in the development of Type 2 Diabetes and diabetic complications. Controlling postprandial hyperglycemia is the most important factor for reducing the risks of diabetic complications in Type 2 diabetic patients. This study was designed to determine whether Portulaca oleracea L. extract suppresses the activation of carbohydrate-digesting enzymes, and lowers postprandial hyperglycemia in diabetic mice through streptozotocin. P. oleracea was extracted with either 80% ethanol (PEE) or water (PWE), and the extract solutions were concentrated. The ${\alpha}$-glucosidase and ${\alpha}$-amylase inhibition assays were performed using the chromogenic method. Normal mice and STZ-induced diabetic mice were orally treated with PEE, PWE (300 mg/kg of body weight) or acarbose (100 mg/kg of body weight), with soluble starch (2 g/kg of body weight). The ${\alpha}$-glucosidase and ${\alpha}$-amylase inhibitory effectiveness by PEE were markedly more effective than PWE, and both extracts indicated a higher effectiveness than the acarbose (positive control). The rise in postprandial blood glucose due to starch loading was markedly inhibited in the PEE group when compared to the control group in diabetic and normal mice. Furthermore, the area under the concentration-time curve values were markedly declined by the PEE injection in the diabetic group when compared to that exerted for the control group. These results demonstrate that P. oleracea extracts lower postprandial hyperglycemia by inhibiting carbohydrate-digesting enzymes, and that the ethanol extract is more efficacious than the water extract.
Keywords
${\alpha}$-amylase; ${\alpha}$-glucosidase; diabetes; Portulaca oleracea L.; postprandial hyperglycemia;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Baron, A. D. 1998. Postprandial hyperglycemia and $\alpha$-glucosidase inhibitors. Diabetes Res. Clin. Pract. 40, 51-55.   DOI
2 Bhandari, M. R., Anurakkun, N. J., Hong, G. and Kawabata, J. 2008. $\alpha$-Glucosidase and $\alpha$-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chem. 106, 247-252.   DOI
3 Ceriello, A. 2005. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 54, 1-7.   DOI
4 Chai, T. T., Kwek, M. T., Ong, H. C. and Wong, F. C. 2015. Water fraction of edible medicinal fern Stenochlaena palustris is a potent $\alpha$-glucosidase inhibitor with concurrent antioxidant activity. Food Chem. 186, 26-31.   DOI
5 Chen, J., Shi, Y. P. and Liu, J. Y. 2003. Determination of noradrenaline and dopamine in Chinese herbal extracts from Portulaca oleracea L. by high-performance liquid chromatography. J. Chromatogr. A. 1003, 127-132.   DOI
6 Cuvelier, M. E., Richard, H. and Berset, C. 1996. Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. J. Am. Oil. Chem. Soc. 73, 645-652.   DOI
7 Dennis, J. W., Laferte, S., Waghorne, C., Breitman, M. L. and Kergel, R. S. 1987. Beta 1-6 Branching of asn-linked oligosaccharides is directly associated with metastasis. Science 236, 582-585.   DOI
8 Haller, H. 1998. The clinical importance of postprandial glucose. Diabetes Res. Clin. Pract. 40, 43-49   DOI
9 Hanefeld, M. 1998. The role of acarbose in the treatment of non-insulin-dependent diabetes mellitus. J. Diabetes Complicat. 12, 228-237.   DOI
10 Honeycutt, A. A., Boyle, J. P., Broglio, K. R., Thompson, T. J., Hoerger, T. J., Geiss, L. S. and Narayan, K. M. 2003. A dynamic Markov model for forecasting diabetes prevalence in the United States through 2050. Health Care Manag. Sci. 6, 155-164.   DOI
11 Inoue, I., Takahashi, K., Noji, S., Awata, T., Negishi, K. and Kataya-ma, S. 1997. Acarbose controls postprandial hyperproinsulinemia in non-insulin-dependent diabetes mellitus. Diabetes Res. Clin. Pract. 36, 143-151.   DOI
12 Kamal, U., Abdul, S. J., Eaqub, A. and Mohd, R. I. 2012. Evaluation of Antioxidant properties and mineral composition of purslane (portulaca oleracea) at different growth stages. Int. J. Mol. Sci. 13, 10257-10267.   DOI
13 Kawamura-Konishi, Y., Watanabe, N., Saito, M., Nakajima, N., Sakaki, T., Katayama, T. and Enomoto, T. 2012. Isolation of a new phlorotannin, a potent inhibitor of carbohydrate-hydrolyzing enzymes, from the brown alga Sargassum patens. J. Agric. Food Chem. 60, 5565-5570.   DOI
14 Kawano, H., Motoyama, T., Hirashima, O., Hirai, N., Miyao, Y., Sakamoto, T., Kugiyama, K., Ogawa, H. and Yasue, H. 1999. Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery. J. Am. Coll. Cardiol. 34, 146-154.   DOI
15 Kim, J. S. 2004. Effect of Rhemanniae radix on the hyperglycemic mice induced with streptozotocin. J. Kor. Soc. Food Sci. Nutr. 33, 1133-1138.   DOI
16 Kim, M. J. 2011. Studies on the Biological Activities of Purslane(Portulaca oleracea), MS thesis, University of Gyeongsang, Jinju, Gyeongnam, korea.
17 Li, Y., Wen, S., Kota, B. P., Peng, G., Li, G. Q., Yamahara, J. and Roufogalis, B. D. 2005. Punica granatum flower extract, a potent $\alpha$-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats. J. Ethnopharmacol. 99, 239-244.   DOI
18 Kin, J. E., Joo, S. I., Seo, J. H. and Lee, S. P. 2009. Antioxidant and $\alpha$-glucosidase inhibitory effect of Tartary Buckwheat extract obtained by the treatment of different solvents and enzymes. J. Kor. Soc. Food Sci. Nutr. 38, 989-995.   DOI
19 Kwon, Y. R., Cho, S. M., Hwang, S. P., Kwon, G. M., Kim, J. W. and Youn, K. S. 2014. Antioxidant, physiological activities, and acetylcholinesterase inhibitory activity of Portulaca oleracea extracts with different extraction methods. J. Kor. Soc. Food Sci. Nutr. 43, 389-396.   DOI
20 Lei, X., Li, J., Liu, B., Zhang, N. and Liu, H. 2015. Separation and identification of four new compounds with antibacterial activity from Portulaca oleracea L. Molecules 20, 16375-16387.   DOI
21 Lu, Y., Demleitner, M. F., Song, L., Rychlik, M. and Huang, D. 2016. Oligomeric proanthocyanidins are the active compounds in Abelmoschus esculentus Moench for its $\alpha$-amylase and $\alpha$-glucosidase inhibition activity. J. Funct. Foods 20, 463-471.   DOI
22 Palaniswamya, U. R., Bible, B. B. and McAvoy, R. J. 2004. Oxalic acid concentrations in Purslane (Portulaca oleraceae L.) is altered by the stage of harvest and the nitrate to ammonium ratios in hydroponics. Sci. Hortic. 102, 267-275.   DOI
23 Stern, J. L., Hagerman, A. E., Steinberg, P. D. and Mason, P. K. 1996. Phlorotannins-protein interactions. J. Chem. Ecol. 22, 1877-1899.   DOI
24 Pirart, L. 1978. Diabetes mellitus and its degenerative complieations: a prospective study of 4400 patients observed between 1947 and 1973. Diabetes Care 1, 168-172.   DOI
25 Puls, W., Keup, U., Krause, H. P., Thomas, G. and Hoffmeister, F. 1997. Glucosidase inhibition. A new approach to the treatment of diabetes, obesity, and hyperlipoproteinaemia. Naturwissenschaften 64, 536-537.
26 Saito, N., Sakai, H., Suzuki, S., Sekihara, H. and Yajima, Y. 1998. Effect of an $\alpha$-glucosidase inhibitor (voglibose), in combination with sulphonilureas, on glycaemic control in type 2 diabetes patients. J. Int. Med. Res. 26, 219-232.   DOI
27 Scott, L. J. and Spencer, C. M. 2000. Miglitol: a review of its therapeutic potential in type 2 diabetes mellitus. Drugs 59, 521-549.   DOI
28 Standl, E., Baumgartl, H. J., Fuchtenbusch, M. and Stemplinger, J. 1999. Effect of acarbose on additional insulin therapy in type 2 diabetic patients with late failure of sulphonylurea therapy. Diabetes Obes. Metab. 1, 215-220.   DOI
29 Tai, E. S., Lim, S. C., Tan, B. Y., Chew, S. K., Heng, D. and Tan, C. E. 2000. Screening for diabetes mellitus-a two-step approach in individuals with impaired fasting glucose improves detection of those at risk of complications. Diabet. Med. 17, 771-775.   DOI
30 Temelkova-Kurktschiev, T. S., Koehler, C., Henkel, E., Leonhardt, W., Fuecker, K. and Hanefeld, M. 2004. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care 23, 1830-1834.
31 Watanabe, J., Kawabata, J., Kurihara, H. and Niki, R. 1997. Isolation and identification of alpha-glucosidase inhibitors from tochucha (Eucommia ulmoides). Biosci. Biotechnol. Biochem. 61, 177-178.   DOI
32 West, I. C. 2000. Radicals and oxidative stress in diabetes. Diabet. Med. 17, 171-180.   DOI
33 Ratner, R. E. 2001. Controlling postprandial hyperglycemia. Am. J. Cardiol. 88, 26-31.   DOI
34 Zhang, J. Y., Chen, X. G. and Hu, Z. D. 2002. Quantification of noradrenaline and dopamine in Portulaca oleracea L. by capillary electrophoresis with laser-induced fluorescence detection. Anal. Chim. Acta. 471, 203-209.   DOI
35 Barakat, L. A. and Mahmoud, R. H. 2011. The antiatherogenic, renal protective and immunomodulatory effects of purslane, pumpkin and flax seeds on hypercholesterolemic rats. N. Am. J. Med. Sci. 3, 351-357.
36 Yen, G. C., Chen, H. Y. and Peng, H. H. 2001. Evaluation of the cytotoxicity, mutagenicity and antimutagenicity of emerging edible plants. Food Chem. Toxicol. 39, 1045-1053.   DOI
37 Yazici, I., Turkan, I., Sekmen, A. H. and Demiral, T. 2007. Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ. Exp. Bot. 61, 49-57.   DOI