Browse > Article

Fostering Mathematical Creativity by Exemplification  

Park, JinHyeong (Myongji University)
Kim, Dong-Won (Cheong-Ju National University of Education)
Publication Information
Journal of Educational Research in Mathematics / v.26, no.1, 2016 , pp. 1-22 More about this Journal
Abstract
This study aims to design an exemplification task to facilitate the students' creative thinking, and to investigate mathematical creativity which emerges from exemplification. In particular, we aim to identify the ways to design exemplification tasks which encourage creative thinking, and characterize mathematical creativity fostered by exemplification. The findings showed that the students' creative thinking related to fluency, flexibility, elaboration, and originality emerged through exemplification.
Keywords
exemplification; mathematical creativity; abduction; geometry;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 김도한, 박혜숙, 이재학, 김홍종, 백석윤, 박경미, 송용진, 방정숙, 이정례, 나귀수, 도종훈, 손홍찬, 홍진곤, 하길찬, 김재완, 최지선, 최혜령, 이환철, 이문호(2009). 2009년 창의 중심 의 미래형 수학과 교육과정 모형 연구. 한국 과학창의재단, 서울: 한국과학창의재단.
2 박만구(2009). 수학교육에서 창의성의 개념 및 신장 방안, 수학교육, 23(3), 803-822.
3 박만구(2011). 창의성 신장을 위한 초등수학 과제의 유형, 초등수학교육, 14(2), 117-134.
4 성창근, 박성선(2012). 수학적 창의성 계발을 위한 과제와 수업 방향 탐색, 한국초등수학교육학회지, 16(2), 253-267
5 송상헌(2006). 수학 영재의 판별과 선발. 한국학술정보(주).
6 오택근(2014). 벡터 수업의 담론 창의성 분석. 서울대학교 대학원 박사학위논문.
7 오택근(2015). 수학사에 기초한 벡터의 내적과 외적의 연결, 수학교육학연구, 25(2), 177-188.
8 우정호(1998). 학교수학의 교육적 기초. 서울: 서울대학교 출판부.
9 이경화(2015). 수학적 창의성: 수학적 창의성의 눈으로 본 수학교육, 서울: 경문사.
10 이정연, 이경화(2010). Simpson의 패러독스를 활용한 영재교육에서 창의성 발현 사례 분석, 수학교육학연구, 20(3), 203-219.
11 최병훈, 방정숙(2012). 수학적 창의성 교육에 관한 연구 동향 분석, 영재교육연구, 22(1), 197-215.
12 Balka, D. S. (1974). Creative ability in mathematics. Arithmetic teacher, 21, 633-636.
13 Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches (3rd ed.). Thousand Oaks, CA: Sage Publications.
14 Common Core State Standards Initiative(CCSSI: 2010). Common Core State Standards for Mathematics(CCSSM). http://www.corestandards.org/assets/CCSSI_Math %20Standards.pdf
15 Eco, U. (1983). Horns, hooves, insteps: Some hypotheses on three types of abduction. In U. Eco & T. Sebeok (Eds.), The sign of three: Dupin, Holmes, Peirce (pp. 198-220). Bloomington, IN: Indiana University Press.
16 Hazzan, O., & Zazkis, R. (1997). Constructing knowledge by constructing examples for mathematical concepts. In E. Pehkonen (Ed.), Proceedings of the 21st Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 299-306). Lahti, Finland: University of Helsinki.
17 Krutetskii, V. A. (1976). The psychology of mathematical abilities in school children. (J. Kilpatrick & I. Wirszup, Eds.; J. Teller, Trans.). Chicago: University of Chicago Press. (Original work published 1968)
18 Man, E.L. (2006). Creativity: The essence of mathematics. Journal for the education of the gifted, 30(2), 236-260.   DOI
19 Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 129-145). Rotterdam: Sense Publisher.
20 Maass, K. (2006). What are modelling competencies? ZDM, 38(2), 113-142.   DOI
21 Marton, F. (2006). Sameness and difference in transfer, The journal of the learning sciences, 15(4), 499-535.   DOI
22 Nadjafikhah, M., Yaftian, N., & Bakhshalizadeh, S. (2012). Mathematical creativity: some definitions and characteristics. Procedia- Social and behavioural sciences, 31, 285-291.   DOI
23 National Council of Teachers of Mathematics (NCTM: 2000). Principles and standards for school mathematics. Reston: VA.
24 Otte, M. (2011). Evolution, learning, and semiotics from a Peircean point of view, Educational studies in mathematics, 77, 313-329.   DOI
25 Pedemonte, B. & Reid, D. (2011). The role of abduction in proving processes, Educational studies in mathematics, 76, 281-303.   DOI
26 Prawat, R. S. (1999). Dewey, Peirce, and the learning paradox, American educational research journal, 36(1), 47-76.   DOI
27 Sheffield, L. J. (2006). Developing mathematical promise and creativity. Research in mathematics education, 10(1), 1-11.   DOI
28 Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problems posing and problem solving. ZDM, 29(3), 75-80.   DOI
29 Sriraman, B. (2004). The characteristics of mathematical creativity. ZDM, 41, 13-27.
30 Sriraman, B. (2005). Are giftedness & creativity synonyms in mathematics? An analysis of constructs within the professional and school realms. The journal of secondary gifted education, 17, 20-36.   DOI
31 Stake, R. (1995). The art of case study research, Thousand Oaks: Sage Publications
32 Torrance, E. P. (1966): The Torrance tests of creative thinking: Technical-norms manual. Princeton, NJ: Personnel Press.
33 Watson, A. & Mason, J. (2005). 색다른 학교수학. (이경화 역). 서울: 경문사.
34 Watson, A. & Shipman, S. (2008). Using learner generated examples to introduce new concepts, Educational studies in mathematics, 69, 97-109.   DOI
35 Yuan, X., & Sriraman, B. (2011). An exploratory study of relationships between students' creativity and mathematical problem-posing abilities. In K. H. Lee & B. Sriraman (Eds.), The elements of creativity and giftedness in mathematics (pp. 5-28). Rotterdam, The Netherlands: Sense Publishers.