Browse > Article
http://dx.doi.org/10.7468/jksmec.2018.21.4.375

How Dense Are Rational Numbers?: An Inclusive Materialist Case Study to Digital Technology  

Kim, Doyen (Graduate School of Seoul National University)
Kwon, Oh Nam (Seoul National University)
Publication Information
Education of Primary School Mathematics / v.21, no.4, 2018 , pp. 375-395 More about this Journal
Abstract
This study examines the influence of the bodily interaction with digital technology on meaning-making process in a mathematical activity. Increasing interest in the use of multi-touch dynamic digital technology has brought the movement of the body to the center of research focus in recent mathematics education literature. Thereby, we investigate the process in which the meaning of the density of rational numbers emerges around the bodily interaction on the multi-touch dynamic digital technology. We analyze a case of a small group of primary school students with microethnography. In the result, the students formed the higher level of meaning of the density, where the finger movement of zooming in-and-out played a crucial role throughout the meaning-maknig process.
Keywords
Density; Digital Technology; Touchpad; Body; Inclusive materialism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 de Freitas, E., & Sinclair, N. (2013). New materialist ontologies in mathematics education: The body in/of mathematics. Educational Studies in Mathematics, 83(3), 453-470.   DOI
2 de Freitas, E., & Sinclair, N. (2014). Mathematics and the body: Material entanglements in the classroom. NY: Cambridge University Press.
3 Deleuze, G. (1994). Difference and repetition (P. Patton, Trans.). London: Athlone.
4 Deleuze, G., & Guattari, F. l. (1987). A thousand plateaus: Capitalism and schizophrenia. Minneapolis: University of Minnesota Press.
5 Drijvers, P., & Ferrara, F. (2018). Instruments and the body. In E. Bergqvist, M. Osterholm, C. Granberg, & L. Sumpter (Eds.), Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 193-194). Umea, Sweden: PME.
6 Ferrara, F., Faggiano, E., & Montone, A. (2017). Introduction: Innovative spaces for mathematics education with technology. In E. Faggiano, F. Ferrara, & A. Montone (Eds.), Innovation and technology enhancing mathematics education: Perspectives in the digital era (pp. 1-5). Cham: Springer.
7 Ferrara, F., & Ferrari, G. (2017). Agency and assemblage in pattern generalisation. Educational Studies in Mathematics, 94, 21-36. doi:10.1007/s10649-016-9708-5   DOI
8 Gucler, B., Hegedus, S., Robidoux, R., & Jackiw, N. (2013). Investigating the mathematical discourse of young learners involved in multi-modal mathematical investigations: The case of haptic technologies. In D. Martinovic, V. Freiman, & Z. Karadog (Eds.), Visual mathematics and cyberlearning (pp. 97-118). Dordrecht: Springer.
9 Haus, J. M. (2018). Performative intra-action of a paper plane and a child: Exploring scientific concepts as agentic playmates. Research in Science Education. doi:10.1007/s11165-018-9733-8   DOI
10 Hegedus, S. J., & Tall, D. O. (2016). Foundations for the future: The potential of multimodal technologies for learning mathematics. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (pp. 556-575). New York, NY: Routledge.
11 Hoyles, C., & Lagrange, J.-B. (2010). Introduction. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and techonlogy: Rethinking the terrain (pp. 1-11). New York: Springer.
12 Roschelle, J., Noss, R., Blikstein, P., & Jackiw, N. (2017). Technology for learning mathematics. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 853-872). Reston, VA: NCTM.
13 Kaput, J. J. (1992). Technology and mathematics education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning.
14 Nemirovsky, R., Kelton, M. L., & Rhodehamel, B. (2013). Playing mathematical instruments: Emerging perceptuomotor integration with an interactive mathematics exhibit. Journal for Research in Mathematics Education, 44(2), 372-415.   DOI
15 Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings. Educational Studies in Mathematics, 70(2), 111-126.   DOI
16 Roth, W.-M. (2016). Growing-making mathematics: A dynamic perspective on people, materials, and movement in classrooms. Educational Studies in Mathematics, 93(1), 87-103.   DOI
17 Rotman, B. (2008). Becoming beside ourselves : the alphabet, ghosts, and distributed human being. Durham: Duke University Press.
18 Sinclair, N., Arzarello, F., Gaisman, M. T., & Lozano, M. D. (2010). Implementing digital technologies at a national scale. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology: Rethinking the terrain (pp. 61-78). New York: Springer.
19 Sinclair, N., & de Freitas, E. (2014). The haptic nature of gesture: Rethinking gesture with new multitouch digital technologies. Gesture, 14(3), 351-374.   DOI
20 Sinclair, N., de Freitas, E., & Ferrara, F. (2013). Virtual encounters: The murky and furtive world of mathematical inventiveness. ZDM, 45(2), 239-252.   DOI
21 Vamvakoussi, X., Christou, K. P., Mertens, L., & Van Dooren, W. (2011). What fills the gap between discrete and dense? Greek and Flemish students' understanding of density. Learning and Instruction, 21(5), 676-685.   DOI
22 Sinclair, N., & Pimm, D. (2015). Mathematics using multiple senses: Developing finger gnosis with three-and four-year-olds in an era of multi-touch technologies. Asia-Pacific Journal of Research in Early Childhood Education, 9(3), 99-109.   DOI
23 Streeck, J., & Mehus, S. (2005). Microethnography: The study of practices. In K. L. Fitch & R. E. Sanders (Eds.), Handbook of language and social interaction (pp. 381-404). Mahwah, NJ: Lawrence Erlbaum Associates.
24 Trouche, L. (2014). Instrumentation in mathematics education. In S. Lerman (Ed.), Encycolopedia of Mathematics Education (pp. 307-313). Dordrecht: Springer.
25 Vamvakoussi, X., & Vosniadou, S. (2004). Understanding the structure of the set of rational numbers: A conceptual change approach. Learning and Instruction, 14(5), 453-467.   DOI
26 Vamvakoussi, X., & Vosniadou, S. (2007). How many numbers are there in a rational numbers interval? Constraints, synthetic models and the effect of the number line. In S. Vosniadou, A. Baltas, & X. Vamvakoussi (Eds.), Reframing the conceptual change approach in learning and instruction (pp. 265-282). Amsterdam: Elsevier.
27 Vamvakoussi, X., & Vosniadou, S. (2010). How many decimals are there between two fractions? Aspects of secondary school students' understanding of rational numbers and their notation. Cognition and Instruction, 28(2), 181-209.   DOI
28 Ko, H., Kim, E., Yang, S., Kwon, S., Kwon, S. Jung, N., Jang, I., Lim, Y., Choi, S., Lee, S., Roh, S., Baek, H., & Hong, C. (2013). Middle school mathematics 3. Seoul: Kyohaksa.
29 Walter, D. (2018). How children using counting strategies represent quantities on the virtual and physical 'twenty frame'. In L. Ball, P. Drijvers, S. Ladel, H.-S. Siller, M. Tabach, & C. Vale(Eds.), Uses of technology in primary and secondary mathematics edcuation: Tools, topics and trends (pp.119-143). Cham: Springer.
30 Zbiek, R. M., Heid, M. K., Blume, G. W., & Dick, T. P. (2007). Research on technology in mathematics education: The perspective of constructs. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1169-1207). Charlotte, NC: Information Age Publishing.
31 Ministry of Education, Science and Technology (2011). Mathematics curriculum. Ministry of Education, Science and Technology Notice 2011-361 [Supplement 8] .
32 Kim, M. H. & Kim, H. J. (2015). Internet of things and hyper-connected society: conceptual foundation and possibilities of the technique humanities. Visual Culture, 27, 215-238.
33 Baccaglini-Frank, A., & Maracci, M. (2015). Multi-touch technology and preschoolers' development of number-sense. Digital Experiences in Mathematics Education, 1(1), 7-27.   DOI
34 Lew. H., Lew, S., Lee, K.-H., Kim, C., Kang, S., Yoon, O., Kim, M., Cho, S., Chun, T., & Kim, C. (2013). Middle school mathematics 1. Seoul: Chunjae.
35 Moon, S. J. & Lee, K.-H. (2017). The function of signs and attention in teaching-learning of mathematics. School Mathematics, 19(1), 189-208.
36 Woo, J., Park, K., Lee, J., Park, K., KIm, N., Lim, J., Nam, J., Kwon, S., Kim, J., Kang, H., Cho, C., Huh, S., Jeon, J., Koh, H., Lee, J., Choi, E., & Kim, J.. (2013). Middle school mathematics 1. Seoul: Doosan Donga.
37 Cha, D. & Jin, Y. (2015). The future of hyperconnected society, shared economy and internet of things. Seoul: Hans Media.
38 Arzarello, F., Paola, D., Robutti, O., & Sabena, C. (2009). Gestures as semiotic resources in the mathematics classroom. Educational Studies in Mathematics, 70(2), 97-109.   DOI
39 Barad, K. (2007). Meeting the universe halfway: Quantum physics and the entanglement of matter and meaning. Durham: Duke University Press.
40 Gim, C.-C. & Bae, J.-H. (2016). Duleuze and education: Pedagogy of difference-making. Seoul: Hageeshisub.
41 Borba, M. C., Askar, P., Engelbrecht, J., Gadanidis, G., Llinares, S., & Aguilar, M. S. (2016). Blended learning, e-learning and mobile learning in mathematics education. ZDM, 48(5), 589-610. doi:10.1007/s11858-016-0798-4   DOI
42 Chatelet, G. (2000). Figuring space: Philosophy, mathematics, and physics (S. Robert & Z. Muriel, Trans.). Dordrecht: Springer.
43 de Freitas, E., & Palmer, A. (2016). How scientific concepts come to matter in early childhood curriculum: rethinking the concept of force. Cultural Studies of Science Education, 11(4), 1201-1222. doi:10.1007/s11422-014-9652-6   DOI
44 Coole, D. H., & Frost, S. (2010). Introducing the new materialisms. In D. H. Coole & S. Frost (Eds.), New materialisms: Ontology, agency, and politics (pp. 1-43). Durham, NC: Duke University Press.