1 |
de Freitas, E., & Sinclair, N. (2013). New materialist ontologies in mathematics education: The body in/of mathematics. Educational Studies in Mathematics, 83(3), 453-470.
DOI
|
2 |
de Freitas, E., & Sinclair, N. (2014). Mathematics and the body: Material entanglements in the classroom. NY: Cambridge University Press.
|
3 |
Deleuze, G. (1994). Difference and repetition (P. Patton, Trans.). London: Athlone.
|
4 |
Deleuze, G., & Guattari, F. l. (1987). A thousand plateaus: Capitalism and schizophrenia. Minneapolis: University of Minnesota Press.
|
5 |
Drijvers, P., & Ferrara, F. (2018). Instruments and the body. In E. Bergqvist, M. Osterholm, C. Granberg, & L. Sumpter (Eds.), Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 193-194). Umea, Sweden: PME.
|
6 |
Ferrara, F., Faggiano, E., & Montone, A. (2017). Introduction: Innovative spaces for mathematics education with technology. In E. Faggiano, F. Ferrara, & A. Montone (Eds.), Innovation and technology enhancing mathematics education: Perspectives in the digital era (pp. 1-5). Cham: Springer.
|
7 |
Ferrara, F., & Ferrari, G. (2017). Agency and assemblage in pattern generalisation. Educational Studies in Mathematics, 94, 21-36. doi:10.1007/s10649-016-9708-5
DOI
|
8 |
Gucler, B., Hegedus, S., Robidoux, R., & Jackiw, N. (2013). Investigating the mathematical discourse of young learners involved in multi-modal mathematical investigations: The case of haptic technologies. In D. Martinovic, V. Freiman, & Z. Karadog (Eds.), Visual mathematics and cyberlearning (pp. 97-118). Dordrecht: Springer.
|
9 |
Haus, J. M. (2018). Performative intra-action of a paper plane and a child: Exploring scientific concepts as agentic playmates. Research in Science Education. doi:10.1007/s11165-018-9733-8
DOI
|
10 |
Hegedus, S. J., & Tall, D. O. (2016). Foundations for the future: The potential of multimodal technologies for learning mathematics. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (pp. 556-575). New York, NY: Routledge.
|
11 |
Hoyles, C., & Lagrange, J.-B. (2010). Introduction. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and techonlogy: Rethinking the terrain (pp. 1-11). New York: Springer.
|
12 |
Roschelle, J., Noss, R., Blikstein, P., & Jackiw, N. (2017). Technology for learning mathematics. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 853-872). Reston, VA: NCTM.
|
13 |
Kaput, J. J. (1992). Technology and mathematics education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning.
|
14 |
Nemirovsky, R., Kelton, M. L., & Rhodehamel, B. (2013). Playing mathematical instruments: Emerging perceptuomotor integration with an interactive mathematics exhibit. Journal for Research in Mathematics Education, 44(2), 372-415.
DOI
|
15 |
Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings. Educational Studies in Mathematics, 70(2), 111-126.
DOI
|
16 |
Roth, W.-M. (2016). Growing-making mathematics: A dynamic perspective on people, materials, and movement in classrooms. Educational Studies in Mathematics, 93(1), 87-103.
DOI
|
17 |
Rotman, B. (2008). Becoming beside ourselves : the alphabet, ghosts, and distributed human being. Durham: Duke University Press.
|
18 |
Sinclair, N., Arzarello, F., Gaisman, M. T., & Lozano, M. D. (2010). Implementing digital technologies at a national scale. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology: Rethinking the terrain (pp. 61-78). New York: Springer.
|
19 |
Sinclair, N., & de Freitas, E. (2014). The haptic nature of gesture: Rethinking gesture with new multitouch digital technologies. Gesture, 14(3), 351-374.
DOI
|
20 |
Sinclair, N., de Freitas, E., & Ferrara, F. (2013). Virtual encounters: The murky and furtive world of mathematical inventiveness. ZDM, 45(2), 239-252.
DOI
|
21 |
Vamvakoussi, X., Christou, K. P., Mertens, L., & Van Dooren, W. (2011). What fills the gap between discrete and dense? Greek and Flemish students' understanding of density. Learning and Instruction, 21(5), 676-685.
DOI
|
22 |
Sinclair, N., & Pimm, D. (2015). Mathematics using multiple senses: Developing finger gnosis with three-and four-year-olds in an era of multi-touch technologies. Asia-Pacific Journal of Research in Early Childhood Education, 9(3), 99-109.
DOI
|
23 |
Streeck, J., & Mehus, S. (2005). Microethnography: The study of practices. In K. L. Fitch & R. E. Sanders (Eds.), Handbook of language and social interaction (pp. 381-404). Mahwah, NJ: Lawrence Erlbaum Associates.
|
24 |
Trouche, L. (2014). Instrumentation in mathematics education. In S. Lerman (Ed.), Encycolopedia of Mathematics Education (pp. 307-313). Dordrecht: Springer.
|
25 |
Vamvakoussi, X., & Vosniadou, S. (2004). Understanding the structure of the set of rational numbers: A conceptual change approach. Learning and Instruction, 14(5), 453-467.
DOI
|
26 |
Vamvakoussi, X., & Vosniadou, S. (2007). How many numbers are there in a rational numbers interval? Constraints, synthetic models and the effect of the number line. In S. Vosniadou, A. Baltas, & X. Vamvakoussi (Eds.), Reframing the conceptual change approach in learning and instruction (pp. 265-282). Amsterdam: Elsevier.
|
27 |
Vamvakoussi, X., & Vosniadou, S. (2010). How many decimals are there between two fractions? Aspects of secondary school students' understanding of rational numbers and their notation. Cognition and Instruction, 28(2), 181-209.
DOI
|
28 |
Ko, H., Kim, E., Yang, S., Kwon, S., Kwon, S. Jung, N., Jang, I., Lim, Y., Choi, S., Lee, S., Roh, S., Baek, H., & Hong, C. (2013). Middle school mathematics 3. Seoul: Kyohaksa.
|
29 |
Walter, D. (2018). How children using counting strategies represent quantities on the virtual and physical 'twenty frame'. In L. Ball, P. Drijvers, S. Ladel, H.-S. Siller, M. Tabach, & C. Vale(Eds.), Uses of technology in primary and secondary mathematics edcuation: Tools, topics and trends (pp.119-143). Cham: Springer.
|
30 |
Zbiek, R. M., Heid, M. K., Blume, G. W., & Dick, T. P. (2007). Research on technology in mathematics education: The perspective of constructs. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1169-1207). Charlotte, NC: Information Age Publishing.
|
31 |
Ministry of Education, Science and Technology (2011). Mathematics curriculum. Ministry of Education, Science and Technology Notice 2011-361 [Supplement 8] .
|
32 |
Kim, M. H. & Kim, H. J. (2015). Internet of things and hyper-connected society: conceptual foundation and possibilities of the technique humanities. Visual Culture, 27, 215-238.
|
33 |
Baccaglini-Frank, A., & Maracci, M. (2015). Multi-touch technology and preschoolers' development of number-sense. Digital Experiences in Mathematics Education, 1(1), 7-27.
DOI
|
34 |
Lew. H., Lew, S., Lee, K.-H., Kim, C., Kang, S., Yoon, O., Kim, M., Cho, S., Chun, T., & Kim, C. (2013). Middle school mathematics 1. Seoul: Chunjae.
|
35 |
Moon, S. J. & Lee, K.-H. (2017). The function of signs and attention in teaching-learning of mathematics. School Mathematics, 19(1), 189-208.
|
36 |
Woo, J., Park, K., Lee, J., Park, K., KIm, N., Lim, J., Nam, J., Kwon, S., Kim, J., Kang, H., Cho, C., Huh, S., Jeon, J., Koh, H., Lee, J., Choi, E., & Kim, J.. (2013). Middle school mathematics 1. Seoul: Doosan Donga.
|
37 |
Cha, D. & Jin, Y. (2015). The future of hyperconnected society, shared economy and internet of things. Seoul: Hans Media.
|
38 |
Arzarello, F., Paola, D., Robutti, O., & Sabena, C. (2009). Gestures as semiotic resources in the mathematics classroom. Educational Studies in Mathematics, 70(2), 97-109.
DOI
|
39 |
Barad, K. (2007). Meeting the universe halfway: Quantum physics and the entanglement of matter and meaning. Durham: Duke University Press.
|
40 |
Gim, C.-C. & Bae, J.-H. (2016). Duleuze and education: Pedagogy of difference-making. Seoul: Hageeshisub.
|
41 |
Borba, M. C., Askar, P., Engelbrecht, J., Gadanidis, G., Llinares, S., & Aguilar, M. S. (2016). Blended learning, e-learning and mobile learning in mathematics education. ZDM, 48(5), 589-610. doi:10.1007/s11858-016-0798-4
DOI
|
42 |
Chatelet, G. (2000). Figuring space: Philosophy, mathematics, and physics (S. Robert & Z. Muriel, Trans.). Dordrecht: Springer.
|
43 |
de Freitas, E., & Palmer, A. (2016). How scientific concepts come to matter in early childhood curriculum: rethinking the concept of force. Cultural Studies of Science Education, 11(4), 1201-1222. doi:10.1007/s11422-014-9652-6
DOI
|
44 |
Coole, D. H., & Frost, S. (2010). Introducing the new materialisms. In D. H. Coole & S. Frost (Eds.), New materialisms: Ontology, agency, and politics (pp. 1-43). Durham, NC: Duke University Press.
|