Browse > Article
http://dx.doi.org/10.7314/APJCP.2013.14.12.7629

Association of the Cylin D1 G870A Polymorphism with Laryngeal Cancer: Are they Really Related?  

Verim, Aysegul (Department of Otorhinolaryngology/Head and Neck Surgery, Haydarpasa Numune Education and Research Hospital)
Ozkan, Nazli (Department of Molecular Medicine, Istanbul University Experimental Research Institute)
Turan, Saime (Department of Molecular Medicine, Istanbul University Experimental Research Institute)
Korkmaz, Gurbet (Department of Molecular Medicine, Istanbul University Experimental Research Institute)
Cacina, Canan (Department of Molecular Medicine, Istanbul University Experimental Research Institute)
Yaylim, Ilhan (Department of Molecular Medicine, Istanbul University Experimental Research Institute)
Isbir, Turgay (Multidiciplinary Molecular Medicine Department, Institute of Health Sciences, Yeditepe University)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.14, no.12, 2013 , pp. 7629-7634 More about this Journal
Abstract
Background: Cylin D1(CCDN1) is an important regulator of the cell cycle whose alterations are thought to be involved in cancer development. There have been many studies indicating CCDN1 amplification or over-expression in a variety of cancer types. In addition to gene amplification, the G870A polymorphism may be related with altered CCDN1 activity, and therefore with cancer development. This hypothesis has been tested in different cancer types but results have been contradictory. We therefore aimed to investigate any relationship between CCDN1 A870G genotypes and laryngeal squamous cell cancer development and progression. Materials and Methods: A total of 68 Turkish patients with primary laryngeal squamous cell cancer and 133 healthy controls were enrolled. Polymerase chain reaction-restriction fragment length polymorphism analysis was used to determine the CCDN1 genotypes. Results: No significant association was detected between CCDN1 genotypes and laryngeal squamous cell cancer (LxSCCa) development. Similarly CCDN1 genotypes were not related to clinical parameters of Lx SCCa. However, there was a very significant association between CCDN1 G allele and presence of perineural invasion (p=0.003; OR: 1.464; CI% 1.073-1.999). CCDN1 G allele frequency was significantly higher in the individuals with perineural invasion (85.7%) when compared to those without (58.5%). The 2 patients who died of disease were both found to possess the GG genotype. Conclusions: These results pose a controversy in suggesting a protective role of the G allele against LxSCCa development and support the association of CCDN1 gene GG genotype with mortality in patients with LxSCCa.
Keywords
SNP; CCDN1; A870G; pro241pro; laryngeal squamous cell cancer; Turkey;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shu XO, Moore DB, Cai Q, et al (2005). Association of cyclin D1 genotype with breast cancer risk and survival. Cancer Epidemiol Biomarkers Prev, 14, 91-7.
2 Simpson DJ, Fryer AA, Grossman AB, et al (2001). Cyclin D1 (CCND1) genotype is associated with tumour grade in sporadic pituitary adenomas. Carcinogenesis, 22, 1801-7.   DOI   ScienceOn
3 Solomon DA, Wang Y, Fox SR, et al (2003). Cyclin D1 splice variants.Differential effects on localization, RB phosphorylation, and cellular transformation. J Biol Chem, 278, 30339-47.   DOI   ScienceOn
4 Tuncer M, Ozgul N, Olcayto EO, Gultekin M, Erdin B (2009). Turkish Republic, Ministry of Health, National Cancer Control Department, National Cancer Programme, 2009-15.
5 Wang R, Zhang JH, Li Y, et al (2003). The association of cyclin D1 (A870G) polymorphism with susceptibility to esophageal and cardiac cancer in north Chinese population. Zhonghua Yi Xue Za Zhi, 83, 1089-92.
6 Izzo JG, Papadimitrakopoulou VA, Liu DD, et al (2003). Cyclin D1 genotype, response to biochemoprevention, and progression rate to upper aerodigestive tract cancer. J Natl Cancer Inst, 95, 198-205.   DOI   ScienceOn
7 Jain M, Kumar S, Upadhyay R, et al (2007). Influence of apoptosis (BCL2,FAS), cell cycle (CCND1) and growth factor (EGF,EGFR) genetic polymorphisms on survival outcome: an exploratory study in squamous cell esophageal cancer. Cancer Biol Ther, 6, 1553-8.   DOI
8 Jares P, Fernandez PL, Campo E, et al (1994). PRAD-1/cyclin D1 gene amplification correlates with messenger RNA overexpression and tumor progression in human laryngeal carcinomas. Cancer Res, 54, 4813-7.
9 Knudsen KE, Diehl JA, Haiman CA, Knudsen ES (2006). Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene, 25, 1620-8.   DOI   ScienceOn
10 Koufman JA, Burke AJ (1997). The etiology and pathogenesis of laryngeal carcinoma. Otolaryngol Clin North Am, 30, 1-19.
11 Krippl P, Langsenlehner U, Renner W, et al (2003). The 870G4A polymorphism of the cyclin D1 gene is not associated with breast cancer. Breast Cancer Res Treat, 54, 165-8.
12 Landis SH, Murray T, Bolden S, Wingo PA( 1998). Cancer statistics, CA Cancer J Clin, 48, 6-29.   DOI   ScienceOn
13 Matthias C, Branigan K, Jahnke V, et al (1998). Polymorphism within the cyclin D1 gene is associated with prognosis in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res, 4, 2411-8.
14 Matthias C, Jahnke V, Jones PW, et al (1999). Cyclin D1, glutathione S-transferase, and cytochrome P450 genotypes and outcome in patients with upper aerodigestive tract cancers: assessment of the importance of individual genes using multivariate analysis. Cancer Epidemiol Biomarkers Prev, 8, 815-23.
15 Michalides R, van Veelen N, Hart A, et al (1995).Overexpression of cyclin D1 correlates with recurrence in a group of fortyseven operable squamous cell carcinomas of the head and neck. Cancer Res, 55, 975-8.
16 Miller SA, Dykes DD, Polesky HF(1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res, 16, 1215.   DOI   ScienceOn
17 Monteiro E, Varzim G, Pires AM, Teixeira M, Lopes C(2004). Cyclin D1 A870G polymorphism and amplification in laryngeal squamous cell carcinoma: implications of tumor localization and tobacco exposure. Cancer Detect Prev, 28, 237-43.   DOI   ScienceOn
18 Naitoh H, Shibata J, Kawaguchi A, Kodama M, Hattori T (1995). Overexpression and localization of cyclin D1 mRNA and antigen in esophageal cancer. Am J Pathol, 146, 1161-9.
19 Motokura T, Arnold A (1993). Cyclins and oncogenesis. Biochim Biophys Acta, 1155, 63-78.
20 Muller D, Millon R, Velten M, et al (1997). Amplification of 11q13 DNA markers in head and neck squamous cell carcinomas: correlation with clinical outcome. Eur J Cancer, 33, 2203-10.   DOI   ScienceOn
21 Berrino F (1999). WHO, IARC, Commision of the European Communities.Survival of Cancer Patients in Europe:The EUROCARE-2 study. IARC Sci Publ, 151, 1-572.
22 Betticher DC, Thatcher N, Altermatt HJ, et al (1995). Alternate splicing produces a novel cyclin D1 transcript. Oncogene, 11, 1005-11.
23 Betticher DC (1996). Cyclin D1, another molecule of the year? Ann Oncol, 7, 223-5.   DOI   ScienceOn
24 Boffetta P, Ye W, Adami HO, Mucci LA, et al (2001). Risk of cancers of the lung, head and neck in patients hospitalized for alcoholism in Sweden. Br J Cancer, 85, 678-82.   DOI   ScienceOn
25 Callender T, el-Naggar AK, Lee MS, et al (1994). PRAD-1 (CCND1)/cyclin D1 oncogene amplification in primary head and neck squamous cell carcinoma. Cancer, 74, 152-8.   DOI
26 Cann CI, Fried MP, Rothman KJ (1985). Epidemiology of squamous cell cancer of the head and neck. Otolaryngo Clin North Am, 18, 367-88.
27 Coleman MP, Esteve J, Damiecki P, Arslan A, Renard H (1993). Trends in cancer incidence and mortality. IARC Sci Publ, 121, 1-806.
28 Gleich LL, Salamone FN (2002). Molecular genetics of head and neck cancer. Cancer Control, 9, 369-78.   DOI
29 Dhar KK, Branigan K, Howells RE, et al (1999). Prognostic significance of cyclin D1 gene (CCND1) polymorphism in epithelial ovarian cancer. Int J Gynecol Cancer, 9, 342-7.   DOI   ScienceOn
30 Gazioglu NM, Erensoy N, Kadioglu P, Sayitoglu MA, Ersoy IH (2007). Altered cyclin D1 genotype distribution in human sporadic pituitary adenomas. Med Sci Monit, 13, 457-63.
31 Grieu F, Malaney S, Ward R, Joseph D, Iacopetta B (2003). Lack of association between CCND1 G870A polymorphism and the risk of breast and colorectal cancers. Anticancer Res, 23, 4257-9.
32 Hall M, Peters G (1996). Genetic alterations of cyclins, cyclindependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res, 68, 67-108.   DOI
33 Hibberts NA, Simpson DJ, Bicknell JE, et al (1999). Analysis of cyclin D1 (CCND1) allelic imbalance and overexpression in sporadic human pituitary tumors. Clin Cancer Res, 5, 2133-9.
34 Huang SF, Cheng SD, Chuang WY, et al (2012). Cyclin D1 overexpression and poor clinical outcomes in Taiwanese oral cavity squamous cell carcinoma. World J Surg Oncol, 10, 40.   DOI   ScienceOn
35 Akervall JA, Michalides RJ, Mineta H, et al (1997). Amplification of cyclin D1 in squamous cell carcinoma of the head and neck and the prognostic value of chromosomal abnormalities and cyclin D1 overexpression. Cancer, 79, 380-9.   DOI
36 Bellacosa A, Almadori G, Cavallo S, et al (1996). Cyclin D1 gene amplification in human laryngeal squamous cell carcinomas: prognostic significance and clinical implications. Clin Cancer Res, 2, 175-80.
37 Yilmaz T,Hosal AS,Gedikoglu Getal (1998).Prognostic significance of vascular and perineural invasion in cancer of the larynx. Am J Otolaryngol. 19, 83-8.   DOI   ScienceOn
38 Hunter T, Pines J (1994). Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell, 79, 573-82.   DOI   ScienceOn
39 Weinstein IB, Begemann M, Zhou P, et al (1997). Disorders in cell circuitry associated with multistage carcinogenesis: exploitable targets for cancer prevention and therapy. Clin Cancer Res, 3, 2696-702.
40 Yaylim-Eraltan I, Ergen A, Gormus U, et al (2009). Breast cancer and cyclin D1 gene polymorphism in Turkish women. In Vivo, 23, 767-72.
41 Zhang LQ, Huang XE, Wang J, et al (2011). The cyclin D1 G870A polymorphism and colorectal cancer susceptibility: a meta-analysis of 20 populations. Asian Pac J Cancer Prev, 12, 81-5.
42 Zhang J, Li Y, Wang R, et al (2003). Association of cyclin D1 (G870A) polymorphism with susceptibility to esophageal and gastric cardiac carcinoma in a northern Chinese population. Int J Cancer, 105, 281-4.   DOI   ScienceOn
43 Zheng Y, Shen H, Sturgis EM, et al (2001). Cyclin D1 polymorphism and risk for squamous cell carcinoma of the head and neck: a case-control study. Carcinogenesis, 22, 1195-99.   DOI   ScienceOn
44 Zhuo W, Zhang L, Wang Y, Zhu B, Chen Z (2012). Cyclin D1 G870A polymorphism is a risk factor for esophageal cancer among Asians. Cancer Invest, 30, 630-6.   DOI   ScienceOn
45 Qiuling S, Yuxin Z, Suhua Z, et al (2003). Cyclin D1 gene polymorphism and susceptibility to lung cancer in a Chinese population. Carcinogenesis, 24, 1499-503.   DOI   ScienceOn
46 Nilsson M, Chow WH, Lindblad M, Ye W (2005). No association between gastroesophageal reflux and cancers of the larynx and pharynx. Cancer Epidemiol Biomarkers Prev, 14, 1194-7.   DOI   ScienceOn
47 Nishimoto IN, Pinheiro NA, Rogatto SR, et al (2004). Cyclin D1gene polymorphism as a risk factor for squamous cell carcinoma of the upper aerodigestive system in nonalcoholics. Oral Oncol, 40, 604-10.   DOI   ScienceOn
48 Pabalan N, Bapat B, Sung L, et al (2008). Cyclin D1 Pro241Pro (CCND1-G870A) polymorphism is associated with increased cancer risk in human populations: a meta-analysis. Cancer Epidemiol Biomarkers Prev, 17, 2773-81.   DOI   ScienceOn
49 Palmero I, Peters G (1996). Perturbation of cell cycle regulators in human cancer. Cancer Surv, 27, 351-67.
50 Papadimitrakopoulou V, Izzo JG, Liu DD, et al (2009). Cyclin D1 and cancer development in laryngeal premalignancy patients. Cancer Prev Res, 2, 14-21.   DOI   ScienceOn
51 Rydzanicz M, Golusinski P, Mielcarek-Kuchta D, Golusinski W, Szyfter K (2006). Cyclin D1 gene (CCND1) polymorphism and the risk of squamous cell carcinoma of the larynx. Eur Arch Otorhinolaryngol, 263, 43-8.   DOI
52 Sanyal S, Festa F, Sakano S, et al (2004). Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis, 25, 729-34.
53 Sawa H, Ohshima TA, Ukita H, et al (1998). Alternatively spliced forms of cyclin D1 modulate entry into the cell cycle in an inverse manner. Oncogene, 16, 1701-12.   DOI
54 Schernhammer ES, Tranah GJ, Giovannucci E et al (2006). Cyclin D1 A870G polymorphism and the risk of colorectal cancer and adenoma. Br J Cancer, 94, 928-34.   DOI   ScienceOn
55 Sherr CJ (1995). D-type cyclins. Trends Biochem Sci, 20, 187-90.   DOI   ScienceOn
56 Sherr CJ (1996). Cancer cell cycles. Science, 274, 1672-7.   DOI   ScienceOn