Browse > Article
http://dx.doi.org/10.22469/jkslp.2021.32.2.51

Update on Angiolytic Laser Laryngeal Surgery  

Kang, Min Seok (Department of Otorhinolaryngology, Korean Armed Forces Capital Hospital)
Lim, Jae-Yol (Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine)
Publication Information
Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics / v.32, no.2, 2021 , pp. 51-55 More about this Journal
Abstract
There are several lasers available for office-based or suspension microlaryngoscopy laser procedures in the treatment of laryngeal diseases. Each has advantages and disadvantages given the depth of penetration per unit of power, absorption in water, spectral absorption characteristics, mode of delivery, safety, and cost. It is important to note that while the proper selection of indication of treatment based on a laser wavelength is critical, of equal importance is selecting the appropriate power setting, focal length (or spot size), and time of exposure. The photoangiolytic lasers precisely target hemoglobin within the microcirculation of the highly vascularized tissue and may have better hemostatic effects and preservation of surrounding normal tissue than the CO2 laser. Although the choice of laser is purely theoretical and cannot be accurately concluded which parameters of laser (wattage and pulse width) were best to use, photoangiolytic laser surgery is safe and effective for specific laryngeal lesions. In this review, indications for photoangiolytic laser procedures for various laryngeal diseases, laser settings and surgical techniques for specific laryngeal lesions including sulcus vocalis, laryngeal dysplasia, and recurrent respiratory papillomatosis will be introduced. Pros and cons of in-office laser surgery using photoangiolytic laser and flexible CO2 laser will also be addressed.
Keywords
Larynx; Vocal cords; Lasers; Leukoplakia;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lim JY, Park YM, Kang M, Lee SJ, Baek K, Na J, et al. Angiolytic laser stripping versus CO2 laser microflap excision for vocal fold leukoplakia: Long-term disease control and voice outcomes. PLoS One 2018;13(12):e0209691.   DOI
2 Soni RS, Dailey SH. Sulcus vocalis. Otolaryngol Clin North Am 2019;52(4):735-43.   DOI
3 Mallur PS, Branski RC, Amin MR. 532-nanometer potassium titanyl phosphate (KTP) laser-induced expression of selective matrix metalloproteinases (MMP) in the rat larynx. Laryngoscope 2011;121(2):320-4.   DOI
4 Sheu M, Sridharan S, Paul B, Mallur P, Gandonu S, Bing R, et al. The utility of the potassium titanyl phosphate laser in modulating vocal fold scar in a rat model. Laryngoscope 2013;123(9):2189-94.   DOI
5 Chang JW, Park AY, Byeon HK, Choi HS. Use of pulsed dye laser treatments in patients with vocal fold mucosal bridges with sulcus vocalis - our experience of five cases. Clin Otolaryngol 2017;42(3):715-9.   DOI
6 Lee SW. Fiberoptic laryngeal laser surgery. J Korean Soc Laryngol Phoniatr Logop 2018;29(2):76-8.   DOI
7 Kuet ML, Pitman MJ. Photoangiolytic laser treatment of recurrent respiratory papillomatosis: A scaled assessment. J Voice 2013;27(1):124-8.   DOI
8 Maiman TH. Stimulated optical radiation in ruby. Nature 1960;187:493-4.   DOI
9 Mallur PS, Tajudeen BA, Aaronson N, Branski RC, Amin MR. Quantification of benign lesion regression as a function of 532-nm pulsed potassium titanyl phosphate laser parameter selection. Laryngoscope 2011;121(3):590-5.   DOI
10 Tibbetts KM, Simpson CB. Office-based 532-nanometer pulsed potassium-titanyl-phosphate laser procedures in laryngology. Otolaryngol Clin North Am 2019;52(3):537-57.   DOI
11 Hartnick CJ, Boseley ME, Franco RA Jr, Cunningham MJ, Pransky S. Efficacy of treating children with anterior commissure and true vocal fold respiratory papilloma with the 585-nm pulsed-dye laser. Arch Otolaryngol Head Neck Surg 2007;133(2):127-30.   DOI
12 Fuller TA. Surgical lasers: A clinical guide. New York: Macmillan;1987. p.1-17.
13 Yan Y, Olszewski AE, Hoffman MR, Zhuang P, Ford CN, Dailey SH, et al. Use of lasers in laryngeal surgery. J Voice 2010;24(1):102-9.   DOI
14 McMillan K, Shapshay SM, McGilligan JA, Wang Z, Rebeiz EE. A 585-nanometer pulsed dye laser treatment of laryngeal papillomas: Preliminary report. Laryngoscope 1998;108(7):968-72.   DOI
15 Siegel B, Smith LP. Management of complex glottic stenosis in children with recurrent respiratory papillomatosis. Int J Pediatr Otorhinolaryngol 2013;77(10):1729-33.   DOI
16 Holler T, Allegro J, Chadha NK, Hawkes M, Harrison RV, Forte V, et al. Voice outcomes following repeated surgical resection of laryngeal papillomata in children. Otolaryngol Head Neck Surg 2009;141(4):522-6.   DOI
17 Isenberg JS, Crozier DL, Dailey SH. Institutional and comprehensive review of laryngeal leukoplakia. Ann Otol Rhinol Laryngol 2008;117(1):74-9.   DOI
18 Park YM, Jo KH, Hong HJ, Choi HS. Phonatory outcome of 585 nm/pulsed-dye laser in the management of glottic leukoplakia. Auris Nasus Larynx 2014;41(5):459-63.   DOI
19 Zeitels SM, Burns JA, Lopez-Guerra G, Anderson RR, Hillman RE. Photoangiolytic laser treatment of early glottic cancer: A new management strategy. Ann Otol Rhinol Laryngol 2008;117(7 Suppl):3-24.   DOI
20 Ivancic R, Iqbal H, deSilva B, Pan Q, Matrka L. Current and future management of recurrent respiratory papillomatosis. Laryngoscope Investig Otolaryngol 2018;3(1):22-34.   DOI
21 Park YM, Lim JY, Kang MS, Choi HS. Treatment outcomes of angiolytic laser-assisted glottoplasty in patients with sulcus vocalis. Ann Otol Rhinol Laryngol 2019;128(5):377-83.   DOI
22 Absten GT. Physics of light and lasers. Obstet Gynecol Clin North Am 1991;18(3):407-27.   DOI