Browse > Article
http://dx.doi.org/10.9718/JBER.2007.28.6.713

Automatic Bone Segmentation from CT Images Using Chan-Vese Multiphase Active Contour  

Truc, P.T.H. (Department of Computer Engineering, Kyung Hee University)
Kim, T.S. (Department of Biomedical Engineering, Kyung Hee University)
Kim, Y.H. (College of Advanced Technology, Kyung Hee University)
Ahn, Y.B. (Department of Electronic Engineering, Konkuk University)
Lee, Y.K. (Department of Computer Engineering, Kyung Hee University)
Lee, S.Y. (Department of Computer Engineering, Kyung Hee University)
Publication Information
Journal of Biomedical Engineering Research / v.28, no.6, 2007 , pp. 713-720 More about this Journal
Abstract
In image-guided surgery, automatic bone segmentation of Computed Tomography (CT) images is an important but challenging step. Previous attempts include intensity-, edge-, region-, and deformable curve-based approaches [1], but none claims fully satisfactory performance. Although active contour (AC) techniques possess many excellent characteristics, their applications in CT image segmentation have not worthily exploited yet. In this study, we have evaluated the automaticity and performance of the model of Chan-Vese Multiphase AC Without Edges towards knee bone segmentation from CT images. This model is suitable because it is initialization-insensitive and topology-adaptive. Its segmentation results have been qualitatively compared with those from four other widely used AC models: namely Gradient Vector Flow (GVF) AC, Geometric AC, Geodesic AC, and GVF Fast Geometric AC. To quantitatively evaluate its performance, the results from a commercial software and a medical expert have been used. The evaluation results show that the Chan-Vese model provides superior performance with least user interaction, proving its suitability for automatic bone segmentation from CT images.
Keywords
bone segmentation; active contours; level set methods; CT images;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Wang, M. Greenspan, and R. Ellis, 'Validation of bone segmentation and improved 3-D registration using contour coherence in CT data,' IEEE Trans. Med. Imag., vol. 25, pp. 324-334, 2006   DOI   ScienceOn
2 R. Robb, D. Hanson, R. Karwoski, A. Larson, E. Workman, and M. Stacy, 'Analyze: a comprehensive, operator- interactive software package for multidimensional medical image display and analysis,' Comput. Med. Imaging Graph., vol. 13, pp. 433-454, 1989   DOI   ScienceOn
3 T. Yoo and M. Ackerman, 'Open source software for medical image processing and visualization,' Commun. ACM, vol. 48, pp. 55-59, 2005
4 M. Kass, A. Witkin, and D. Terzopoulos, 'Snakes: active contour models,' Int. J. Comput. Vis., vol. 1, no. 4, pp. 321-331, 1988   DOI
5 J. Sethian, Level Set Methods - Evolving Interface in Geometry, computer vision, New York, USA: Cambridge University Press, 1996
6 L. Ballerini and L. Bocchi, 'Multiple genetic snakes for bone segmentation,' in Applications of Evolutionary Computing: EvoWorkshops, LNCS, vol. 2611, 2003, pp. 346-356
7 R. Malladi, J. A. Sethian, and B. C. Vemuri, 'Shape modeling with front propagation: a level set approach,' IEEE Trans. Patt. Anal. Mach. Intell., vol. 17, no. 2, pp. 158-175, 1995   DOI   ScienceOn
8 T. Chan and L. Vese, 'Active contours without edges,' IEEE Trans. Image Proc., vol. 10, pp. 266-277, 2001   DOI   ScienceOn
9 V. Caselles, R. Kimmel, and G. Sapiro, 'Geodesic active contours,' Int. J. Comp. Vis., vol. 22, pp. 61-79, 1997   DOI
10 L. Cohen and I.Cohen, 'Finite element methods for active contour models and balloons for 2D and 3D images,' IEEE Trans. Patt. Anal. Mach. Intell., vol. 15, no. 11, pp. 1131-1147, 1993   DOI   ScienceOn
11 D. Mumford and J.Shah, 'Optimal approximation by piecewise smooth functions and associated variational problems,' Commun. Pure Appl. Math.,vol. 42, pp. 577-685, 1989   DOI
12 Caselles, F. Catte, T. Coll, and F. Dibos, 'A geometric model for active contours in image processing,' Numerische Mathematik, vol. 66, pp. 1-31, 1993   DOI   ScienceOn
13 T. Sebastian, H. Tek, J. Crisco, and B. Kimia, 'Segmentation of carpal bones from CT images using skeletally coupled deformable models,' Medical Image Analysis, vol. 7, pp. 21-45, 2003   DOI   ScienceOn
14 W. Schroeder, L. Avila, and W. Hoffman, 'Visualizing with VTK: a tutorial,' IEEE Comput. Graph. Appl., vol. 20, pp. 20-27, 2000
15 X. M. Pardo, M. J. Carreira, A. Mosquera, and D. Cabello, 'A snake for CT image segmentation integrating region and edge information,' Image Vis. Comput., vol. 19, pp. 461-475, 2001   DOI   ScienceOn
16 S. Osher and J. A. Sethian, 'Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations,' J. Comp. Physics, vol. 79, pp. 12-49, 1998
17 C. S. Poon and M. Braun, 'Image segmentation by a deformable contour model incorporating region analysis,' Phys. Med. Biol., vol. 42, pp. 1833-1841, 1997   DOI   ScienceOn
18 M. Loog and B. van Ginneken, 'Segmentation of the posterior ribs in chest radiographs using iterated contextual pixel classification,' IEEE Trans. Med. Imag., vol. 25, no. 5, pp. 602-611, 2006   DOI   ScienceOn
19 C. Xu and J. Prince, 'Snakes, shapes, and gradient vector flow,' IEEE Trans. Image Proc., vol. 7, pp. 359-369, 1998   DOI   ScienceOn
20 L. Vese and T. Chan, 'A multiphase level set framework for image segmentation using Mumford and Shah model,' Int. J. Comp. Vis., vol. 50, no. 3, pp. 271-293, 2002   DOI
21 A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver, and A. Tannenbaum, 'A geometric snake model for segmentation of medical imagery,' IEEE Trans. Med. Imag., vol. 16, pp. 199-209, 1997   DOI   ScienceOn
22 G. Sapiro and A. Tannenbaum, 'Affine invariant scale-space,' Int. J. Comp. Vis., vol. 11, no. 1, pp. 25-44, 1993   DOI
23 N. Paragios, O.M-Gottardo, and V. Ramesh, 'Gradient vector flow fast geometric active contours,' IEEE Trans. Patt. Anal. Mach. Intell., vol. 26, pp. 402-407, 2004   DOI   ScienceOn