Browse > Article
http://dx.doi.org/10.4062/biomolther.2021.003

Effects of the Combination of Evogliptin and Leucine on Insulin Resistance and Hepatic Steatosis in High-Fat Diet-Fed Mice  

Shin, Chang Yell (Department of Pharmacology, College of Pharmacy, Chung-Ang University)
Lee, Hak Yeong (Department of Pharmacology, College of Pharmacy, Chung-Ang University)
Kim, Gil Hyung (Department of Pharmacology, College of Pharmacy, Chung-Ang University)
Park, Sun Young (Department of Pharmacology, College of Pharmacy, Chung-Ang University)
Choi, Won Seok (Department of Pharmacology, College of Pharmacy, Chung-Ang University)
Sohn, Uy Dong (Department of Pharmacology, College of Pharmacy, Chung-Ang University)
Publication Information
Biomolecules & Therapeutics / v.29, no.4, 2021 , pp. 419-426 More about this Journal
Abstract
In this study, we aimed to investigate the effects of 8 weeks of treatment with a combination of evogliptin and leucine, a branched-chain amino acid, in mice with high-fat diet (HFD)-induced diabetes. Treatment with evogliptin alone or in combination with leucine reduced the body weight of the mice, compared to the case for those from the HFD control group. Long-term treatment with evogliptin alone or in combination with leucine resulted in a significant reduction in glucose intolerance; however, leucine alone did not affect postprandial glucose control, compared to the case for the mice from the HFD control group. Furthermore, the combination of evogliptin and leucine prevented HFD-induced insulin resistance, which was associated with improved homeostasis model assessment for insulin resistance, accompanied by markedly reduced liver fat deposition, hepatic triglyceride content, and plasma alanine aminotransferase levels. The combination of evogliptin and leucine increased the gene expression levels of hepatic peroxisome proliferator-activated receptor alpha, whereas those of the sterol regulatory element-binding protein 1 and stearoyl-CoA desaturase 1 were not altered, compared to the case in the HFD-fed mice (p<0.05). Thus, our results suggest that the combination of evogliptin and leucine may be beneficial for treating patients with type 2 diabetes and hepatic steatosis; however, further studies are needed to delineate the molecular mechanisms underlying the action of this combination.
Keywords
Evogliptin; Leucine; High-fat diet; Insulin resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Armstrong, M. J., Houlihan, D. D., Rowe, I. A., Clausen, W. H., Elbrond, B., Gough, S. C., Tomlinson, J. W. and Newsome, P. N. (2013) Safety and efficacy of liraglutide in patients with type 2 diabetes and elevated liver enzymes: individual patient data meta-analysis of the LEAD program. Aliment. Pharmacol. Ther. 37, 234-242.   DOI
2 Browning, J. D. and Horton, J. D. (2004) Molecular mediators of hepatic steatosis and liver injury. J. Clin. Invest. 114, 147-152.   DOI
3 Chae, Y. N., Kim, T. H., Kim, M. K., Shin, C. Y., Jung, I. H., Sohn, Y. S. and Son, M. H. (2015) Beneficial effects of evogliptin, a novel dipeptidyl peptidase 4 inhibitor, on adiposity with increased Ppargc1a in white adipose tissue in obese mice. PLoS ONE 10, e0144064.   DOI
4 Chen, K. H., Chen, Y. L., Tang, H. Y., Hung, C. C., Yen, T. H., Cheng, M. L., Shiao, M. S. and Chen, J. K. (2018) Dietary leucine supplement ameliorates hepatic steatosis and diabetic nephropathy in db/db mice. Int. J. Mol. Sci. 19, 1921.   DOI
5 Chen, Q. and Reimer, R. A. (2009) Dairy protein and leucine alter GLP-1 release and mRNA of genes involved in intestinal lipid metabolism in vitro. Nutrition 25, 340-349.   DOI
6 Fu, L., Bruckbauer, A., Li, F., Cao, Q., Cui, X., Wu, R., Shi, H., Zemel, M. B. and Xue, B. (2015) Leucine amplifies the effects of metformin on insulin sensitivity and glycemic control in diet-induced obese mice. Metabolism 64, 845-856.   DOI
7 Fukuda-Tsuru, S., Kakimoto, T., Utsumi, H., Kiuchi, S. and Ishii, S. (2014) The novel dipeptidyl peptidase-4 inhibitor teneligliptin prevents high-fat diet-induced obesity accompanied with increased energy expenditure in mice. Eur. J. Pharmacol. 723, 207-215.   DOI
8 Kern, M., Kloting, N., Niessen, H. G., Thomas, L., Stiller, D., Mark, M., Klein, T. and Bluher, M. (2012) Linagliptin improves insulin sensitivity and hepatic steatosis in diet-induced obesity. PLoS ONE 7, e38744.   DOI
9 Holst, J. J. and Deacon, C. F. (2013) Is there a place for incretin therapies in obesity and prediabetes? Trends Endocrinol. Metab. 24, 145-152.   DOI
10 Kalogeropoulou, D., Lafave, L., Schweim, K., Gannon, M. C. and Nuttall, F. Q. (2008) Leucine, when ingested with glucose, synergistically stimulates insulin secretion and lowers blood glucose. Metabolism 57, 1747-1752.   DOI
11 Kim, M. K., Chae, Y. N., Ahn, G. J., Shin, C. Y., Choi, S. H., Yang, E. K., Sohn, Y. S. and Son, M. H. (2017a) Prevention and treatment effect of evogliptin on hepatic steatosis in high-fat-fed animal models. Arch. Pharm. Res. 40, 268-281.   DOI
12 Kim, M. K., Chae, Y. N., Kim, H. D., Yang, E. K., Cho, E. J., Choi, S. H., Cheong, Y. H., Kim, H. S., Kim, H. J., Jo, Y. W., Son, M. H., Kim, S. H. and Shin, C. Y. (2012) DA-1229, a novel and potent DPP4 inhibitor, improves insulin resistance and delays the onset of diabetes. Life Sci. 90, 21-29.   DOI
13 Kim, S. M., Lee, B., An, H. J., Kim, D. H., Park, K. C., Noh, S. G., Chung, K. W., Lee, E. K., Kim, K. M., Kim, S. J., Chun, P., Lee, H. J., Moon, H. R. and Chung, H. Y. (2017b) Novel PPARalpha agonist MHY553 alleviates hepatic steatosis by increasing fatty acid oxidation and decreasing inflammation during aging. Oncotarget 8, 46273-46285.   DOI
14 Koo, S. H. (2013) Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis. Clin. Mol. Hepatol. 19, 210-215.   DOI
15 Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F. and Turner, R. C. (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412-419.   DOI
16 Lamers, D., Famulla, S., Wronkowitz, N., Hartwig, S., Lehr, S., Ouwens, D. M., Eckardt, K., Kaufman, J. M., Ryden, M., Muller, S., Hanisch, F. G., Ruige, J., Arner, P., Sell, H. and Eckel, J. (2011) Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 60, 1917-1925.   DOI
17 Macotela, Y., Emanuelli, B., Bang, A. M., Espinoza, D. O., Boucher, J., Beebe, K., Gall, W. and Kahn, C. R. (2011) Dietary leucine--an environmental modifier of insulin resistance acting on multiple levels of metabolism. PLoS ONE 6, e21187.   DOI
18 Mashitani, T., Noguchi, R., Okura, Y., Namisaki, T., Mitoro, A., Ishii, H., Nakatani, T., Kikuchi, E., Moriyasu, H., Matsumoto, M., Sato, S., An, T., Morita, H., Aizawa, S., Tokuoka, Y., Ishikawa, M., Matsumura, Y., Ohira, H., Kogure, A., Noguchi, K. and Yoshiji, H. (2016) Efficacy of alogliptin in preventing non-alcoholic fatty liver disease progression in patients with type 2 diabetes. Biomed. Rep. 4, 183-187.   DOI
19 Miyazaki, M., Kato, M., Tanaka, K., Tanaka, M., Kohjima, M., Nakamura, K., Enjoji, M., Nakamuta, M., Kotoh, K. and Takayanagi, R. (2012) Increased hepatic expression of dipeptidyl peptidase-4 in non-alcoholic fatty liver disease and its association with insulin resistance and glucose metabolism. Mol. Med. Rep. 5, 729-733.
20 Moore, M. C., Coate, K. C., Winnick, J. J., An, Z. and Cherrington, A. D. (2012) Regulation of hepatic glucose uptake and storage in vivo. Adv. Nutr. 3, 286-294.   DOI
21 Williams, K. H., Vieira De Ribeiro, A. J., Prakoso, E., Veillard, A. S., Shackel, N. A., Brooks, B., Bu, Y., Cavanagh, E., Raleigh, J., McLennan, S. V., McCaughan, G. W., Keane, F. M., Zekry, A., Gorrell, M. D. and Twigg, S. M. (2015) Circulating dipeptidyl peptidase-4 activity correlates with measures of hepatocyte apoptosis and fibrosis in non-alcoholic fatty liver disease in type 2 diabetes mellitus and obesity: a dual cohort cross-sectional study. J. Diabetes 7, 809-819.   DOI
22 Omar, B. A., Vikman, J., Winzell, M. S., Voss, U., Ekblad, E., Foley, J. E. and Ahren, B. (2013) Enhanced beta cell function and antiinflammatory effect after chronic treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin in an advanced-aged diet-induced obesity mouse model. Diabetologia 56, 1752-1760.   DOI
23 Qin, Y. and Tian, Y. P. (2010) Preventive effects of chronic exogenous growth hormone levels on diet-induced hepatic steatosis in rats. Lipids Health Dis. 9, 78.   DOI
24 Rakhshandehroo, M., Hooiveld, G., Muller, M. and Kersten, S. (2009) Comparative analysis of gene regulation by the transcription factor PPARalpha between mouse and human. PLoS ONE 4, e6796.   DOI
25 Yecies, J. L., Zhang, H. H., Menon, S., Liu, S., Yecies, D., Lipovsky, A. I., Gorgun, C., Kwiatkowski, D. J., Hotamisligil, G. S., Lee, C. H. and Manning, B. D. (2011) Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 14, 21-32.   DOI
26 Yilmaz, Y., Yonal, O., Deyneli, O., Celikel, C. A., Kalayci, C. and Duman, D. G. (2012) Effects of sitagliptin in diabetic patients with nonalcoholic steatohepatitis. Acta Gastroenterol. Belg. 75, 240-244.
27 Zhang, Y., Guo, K., LeBlanc, R. E., Loh, D., Schwartz, G. J. and Yu, Y. H. (2007) Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 56, 1647-1654.   DOI
28 Wang, Z., Yao, T., Pini, M., Zhou, Z., Fantuzzi, G. and Song, Z. (2010) Betaine improved adipose tissue function in mice fed a high-fat diet: a mechanism for hepatoprotective effect of betaine in nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G634-G642.   DOI
29 Conarello, S. L., Li, Z., Ronan, J., Roy, R. S., Zhu, L., Jiang, G., Liu, F., Woods, J., Zycband, E., Moller, D. E., Thornberry, N. A. and Zhang, B. B. (2003) Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc. Natl. Acad. Sci. U.S.A. 100, 6825-6830.   DOI
30 Iwasaki, T., Yoneda, M., Inamori, M., Shirakawa, J., Higurashi, T., Maeda, S., Terauchi, Y. and Nakajima, A. (2011) Sitagliptin as a novel treatment agent for non-alcoholic Fatty liver disease patients with type 2 diabetes mellitus. Hepatogastroenterology 58, 2103-2105.
31 Balaban, Y. H., Korkusuz, P., Simsek, H., Gokcan, H., Gedikoglu, G., Pinar, A., Hascelik, G., Asan, E., Hamaloglu, E. and Tatar, G. (2007) Dipeptidyl peptidase IV (DDP IV) in NASH patients. Ann. Hepatol. 6, 242-250.   DOI
32 Perry, R. J., Samuel, V. T., Petersen, K. F. and Shulman, G. I. (2014) The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510, 84-91.   DOI
33 Layman, D. K. and Walker, D. A. (2006) Potential importance of leucine in treatment of obesity and the metabolic syndrome. J. Nutr. 136, 319S-323S.
34 Aroor, A. R., Habibi, J., Ford, D. A., Nistala, R., Lastra, G., Manrique, C., Dunham, M. M., Ford, K. D., Thyfault, J. P., Parks, E. J., Sowers, J. R. and Rector, R. S. (2015) Dipeptidyl peptidase-4 inhibition ameliorates Western diet-induced hepatic steatosis and insulin resistance through hepatic lipid remodeling and modulation of hepatic mitochondrial function. Diabetes 64, 1988-2001.   DOI