Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.146

Evodiamine Reduces Caffeine-Induced Sleep Disturbances and Excitation in Mice  

Ko, Yong-Hyun (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
Shim, Kyu-Yeon (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
Lee, Seok-Yong (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
Jang, Choon-Gon (Department of Pharmacology, School of Pharmacy, Sungkyunkwan University)
Publication Information
Biomolecules & Therapeutics / v.26, no.5, 2018 , pp. 432-438 More about this Journal
Abstract
Worldwide, caffeine is among the most commonly used stimulatory substances. Unfortunately, significant caffeine consumption is associated with several adverse effects, ranging from sleep disturbances (including insomnia) to cardiovascular problems. This study investigates whether treatment with the Evodia rutaecarpa aqueous extract (ERAE) from berries and its major molecular component, evodiamine, can reduce the adverse caffeine-induced sleep-related and excitation effects. We combined measurements from the pentobarbital-induced sleep test, the open field test, and the locomotor activity test in mice that had been dosed with caffeine. We found that ERAE and evodiamine administration reduced the degree of caffeine-induced sleep disruption during the sleep test. Additionally, we found that evodiamine significantly inhibits caffeine-induced excitation during the open field test, as well as decreasing hyperlocomotion in the locomotor activity test. Additional in vitro experiments showed that caffeine administration decreased the expression of ${\gamma}$-aminobutyric acid $(GABA)_A$ receptor subunits in the mouse hypothalamus. However, evodiamine treatment significantly reversed this expression reduction. Taken together, our results demonstrate that ERAE and its major compound, evodiamine, provide an excellent candidate for the treatment or prevention of caffeine-induced sleep disturbances and excitatory states, and that the mechanism of these beneficial effects acts, at least in part, through the $GABA_A$-ergic system.
Keywords
Evodiamine; Evodia rutaecarpa; Caffeine; ${\gamma}$-aminobutyric acid receptor; Sleep;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Hong, S. I., Kwon, S. H., Hwang, J. Y., Ma, S. H., Seo, J. Y., Ko, Y. H., Kim, H. C., Lee, S. Y. and Jang, C. G. (2016) Quinpirole increases melatonin-augmented pentobarbital sleep via cortical ERK, p38 MAPK, and PKC in mice. Biomol. Ther. (Seoul) 24, 115-122.   DOI
2 Hughes, R. N. and Hancock, N. J. (2017) Effects of acute caffeine on anxiety-related behavior in rats chronically exposed to the drug, with some evidence of possible withdrawal-reversal. Behav. Brain Res. 321, 87-98.   DOI
3 Jain, N. S., Hirani, K. and Chopde, C. T. (2005) Reversal of caffeine-induced anxiety by neurosteroid 3-alpha-hydroxy-5-alpha-pregnane-20-one in rats. Neuropharmacology 48, 627-638.   DOI
4 Jiang, M. L., Zhang, Z. X., Li, Y. Z., Wang, X. H., Yan, W. and Gong, G. Q. (2015) Antidepressant-like effect of evodiamine on chronic unpredictable mild stress rats. Neurosci. Lett. 588, 154-158.   DOI
5 Job, M. O. (2016) Injection of cocaine-amphetamine regulated transcript (CART) peptide into the nucleus accumbens does not inhibit caffeine-induced locomotor activity: implications for CART peptide mechanism. Pharmacol. Biochem. Behav. 148, 8-14.   DOI
6 Kardos, J. and Blandl, T. (1994) Inhibition of a gamma aminobutyric acid A receptor by caffeine. Neuroreport 5, 1249-1252.   DOI
7 Kayir, H. and Uzbay, I. T. (2004) Evidence for the role of nitric oxide in caffeine-induced locomotor activity in mice. Psychopharmacology (Berl.) 172, 11-15.   DOI
8 Kwon, Y. O., Hong, J. T. and Oh, K. W. (2017) Rosmarinic acid potentiates pentobarbital-induced sleep behaviors and non-rapid eye movement (NREM) sleep through the activation of $GABA_A$-ergic systems. Biomol. Ther. (Seoul) 25, 105-111.   DOI
9 Lalonde, R. and Strazielle, C. (2010) Relations between open-field, elevated plus-maze, and emergence tests in C57BL/6J and BALB/c mice injected with GABA- and 5HT-anxiolytic agents. Fundam. Clin. Pharmacol. 24, 365-376.
10 Liao, J. F., Huang, S. Y., Jan, Y. M., Yu, L. L. and Chen, C. F. (1998) Central inhibitory effects of water extract of Acori graminei rhizoma in mice. J. Ethnopharmacol. 61, 185-193.   DOI
11 Li, S., An, J., Sun, C. K. and Li, Z. W. (2004) Inhibitory effect of caffeine on GABA-activated current in acutely isolated rat dorsal root ganglion neurons. Sheng Li Xue Bao 56, 384-388.
12 Li, S., Wang, C., Wang, W., Dong, H., Hou, P. and Tang, Y. (2008) Chronic mild stress impairs cognition in mice: from brain homeostasis to behavior. Life Sci. 82, 934-942.   DOI
13 Mabunga, D. F., Gonzales, E. L., Kim, H. J. and Choung, S. Y. (2015) Treatment of GABA from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice. Biomol. Ther. (Seoul) 23, 268-274.   DOI
14 Ma, Y., Ma, H., Jo, Y. J., Kim, D. S., Woo, S. S., Li, R., Hong, J. T., Moon, D. C., Oh, K. W. and Eun, J. S. (2008) Honokiol potentiates pentobarbital-induced sleeping behaviors through $GABA_A$ receptor Cl- channel activation. Biomol. Ther. (Seoul) 16, 328-335.   DOI
15 Misra, A. L., Vadlamani, N. L. and Pontani, R. B. (1986) Effect of caffeine on cocaine locomotor stimulant activity in rats. Pharmacol. Biochem. Behav. 24, 761-764.   DOI
16 Powell, K. R. and Holtzman S. G. (1998) Lack of NMDA receptor involvement in caffeine-induced locomotor stimulation and tolerance in rats. Pharmacol. Biochem. Behav. 59, 433-438.   DOI
17 Mohler, H., Benke, D., Benson, J., Luscher, B. and Fritschy, J. M. (1995) $GABA_A$-receptor subtypes in vivo: cellular localization, pharmacology and regulation. Adv. Biochem. Psychopharmacol. 48, 41-56.
18 Mukhopadhyay, S. and Poddar, M. K. (1995) Caffeine-induced locomotor activity: possible involvement of GABAergic-dopaminergicadenosinergic interaction. Neurochem. Res. 20, 39-44.
19 Mukhopadhyay, S. and Poddar, M. K. (2000) Long-term caffeine inhibits Ehrlich ascites carcinoma cell-induced induction of central GABAergic activity. Neurochem. Res. 25, 1457-1463.   DOI
20 Nitz, D. and Siegel, J. M. (1996) GABA release in posterior hypothalamus across sleep-wake cycle. Am. J. Physiol. 271, R1707-R1712.
21 Prediger, R. D., Da Cunha, C. and Takahashi, R. N. (2005) Antagonistic interaction between adenosine A2A and dopamine D2 receptors modulates the social recognition memory in reserpine-treated rats. Behav. Pharmacol. 16, 209-218.   DOI
22 Prut, L. and Belzung, C. (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. Eur. J. Pharmacol. 463, 3-33.   DOI
23 Roca, D. J., Schiller, G. D. and Farb, D. H. (1988) Chronic caffeine or theophylline exposure reduces ${\gamma}$-aminobutyric acid/benzodiazepine receptor site interactions. Mol. Pharmacol. 33, 481-485.
24 Sakata, K., Jin, L. and Jha, S. (2010) Lack of promoter IV-driven BDNF transcription results in depression-like behavior. Genes Brain Behav. 9, 712-721.   DOI
25 Sweeney, P., Levack, R., Watters, J., Xu, Z. and Yang, Y. (2016) Caffeine increases food intake while reducing anxiety-related behaviors. Appetite 101, 171-177.   DOI
26 Seifi, M., Brown, J. F., Mills, J., Bhandari, P., Belelli, D., Lambert, J. J., Rudolph, U. and Swinny, J. D. (2014) Molecular and functional diversity of GABA-A receptors in the enteric nervous system of the mouse colon. J. Neurosci. 34, 10361-10378.   DOI
27 Shah, V. K., Choi, J. J., Han, J. Y., Lee, M. K., Hong, J. T. and Oh, K. W. (2014) Pachymic acid enhances pentobarbital-induced sleeping behaviors via $GABA_A$-ergic systems in mice. Biomol. Ther. (Seoul) 22, 314-320.   DOI
28 Shin, Y. W., Bae, E. A., Cai, X. F., Lee, J. J. and Kim, D. H. (2007) In vitro and in vivo antiallergic effect of the fructus of Evodia rutaecarpa and its constituents. Biol. Pharm. Bull. 30, 197-199.   DOI
29 Solinas, M., Ferre, S., You, Z. B., Karcz-Kubicha, M., Popoli, P. and Goldberg, S. R. (2002) Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens. J. Neurosci. 22, 6321-6324.   DOI
30 Sudakov, S. K., Nazarova, G. A., Alekseeva, E. V. and Kolpakov, A. A. (2015) Peripheral administration of a ${\mu}$-opioid receptor agonist DAMGO suppresses the anxiolytic and stimulatory effects of caffeine. Bull. Exp. Biol. Med. 158, 295-297.   DOI
31 Ticku, M. K. and Maksay, G. (1983) Convulsant/depressant site of action at the allosteric benzodiazepine-GABA receptor-ionophore complex. Life Sci. 33, 2363-2375.   DOI
32 Turek, F. W. and Losse-Olson, S. (1986) A benzodiazepine used in the treatment of insomnia phase-shifts the mammalian circadian clock. Nature 321, 167-168.   DOI
33 Wafford, K. A. and Ebert, B. (2006) Gaboxadol--a new awakening in sleep. Curr. Opin. Pharmacol. 6, 30-36.   DOI
34 Dunwiddie, T. V. and Masino, S. A. (2001) The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24, 31-55.   DOI
35 Yanovsky, Y., Schubring, S., Fleischer, W., Gisselmann, G., Zhu, X. R., Lubbert, H., Hatt, H., Rudolph, U., Haas, H. L. and Sergeeva, O. A. (2012) $GABA_A$ receptors involved in sleep and anaesthesia: ${\beta}1$- versus ${\beta}3$-containing assemblies. Pflugers Arch. 463, 187-199.   DOI
36 Yuan, S. M., Gao, K., Wang, D. M., Quan, X. Z., Liu, J. N., Ma, C. M., Qin, C. and Zhang, L. F. (2011) Evodiamine improves congnitive abilities in SAMP8 and APP(swe)/PS1(${\Delta}E9$) transgenic mouse models of Alzheimer's disease. Acta Pharmacol. Sin. 32, 295-302.   DOI
37 Zecharia, A. Y., Nelson, L. E., Gent, T. C., Schumacher, M., Jurd, R., Rudolph, U., Brickley, S. G., Maze, M. and Franks, N. P. (2009) The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the $GABA_A$ receptor ${\beta}_3N265M$ knock-in mouse. J. Neurosci. 29, 2177-2187.   DOI
38 Zhang, Q., Yu, Y. P., Ye, Y. L., Zhang, J. T., Zhang, W. P. and Wei, E. Q. (2011) Spatiotemporal properties of locomotor activity after administration of central nervous stimulants and sedatives in mice. Pharmacol. Biochem. Behav. 97, 577-585.   DOI
39 Zhao, T., Zhang, X., Zhao, Y., Zhang, L., Bai, X., Zhang, J., Zhao, X., Chen, L., Wang, L. and Cui, L. (2014) Pretreatment by evodiamine is neuroprotective in cerebral ischemia: up-regulated pAkt, $pGSK3{\beta}$, down-regulated NF-${\kappa}B$ expression, and ameliorated BBB permeability. Neurochem. Res. 39, 1612-1620.   DOI
40 Cho, S., Yang, H., Yoon, M., Kim, J., Kim, D., Kim, J. and Kim, S. B. (2014) Arousal inhibitory effect of phlorotannins on caffeine in pentobarbital-induced mice. Fish Aquat. Sci. 17, 13-18.
41 Fredholm, B. B., Battig, K., Holmen, J., Nehlig, A. and Zvartau, E. E. (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 51, 83-133.
42 Garrett, B. E. and Holtzman, S. G. (1994) $D_1$ and $D_2$ dopamine receptor antagonists block caffeine-induced stimulation of locomotor activity in rats. Pharmacol. Biochem. Behav. 47, 89-94.
43 Hammer, H., Bader, B. M., Ehnert, C., Bundgaard, C., Bunch, L., Hoestgaard-Jensen, K., Schroeder, O. H., Bastlund, J. F., Gramowski-$Vo{\beta}$, A. and Jensen, A. A. (2015) A multifaceted $GABA_A$ receptor modulator: functional properties and mechanism of action of the sedative-hypnotic and recreational drug methaqualone (quaalude). Mol. Pharmacol. 88, 401-420.   DOI
44 Chagraoui, A., Skiba, M., Thuillez, C. and Thibaut, F. (2016) To what extent is it possible to dissociate the anxiolytic and sedative/hypnotic properties of $GABA_A$ receptors modulators? Prog. Neuropsychopharmacol. Biol. Psychiatry 71, 189-202.   DOI