Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.093

Assessment of the Cytotoxic and Apoptotic Effects of Chaetominine in a Human Leukemia Cell Line  

Yao, Jingyun (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Jiao, Ruihua (Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University)
Liu, Changqing (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Zhang, Yupeng (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Yu, Wanguo (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Lu, Yanhua (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Tan, Renxiang (Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University)
Publication Information
Biomolecules & Therapeutics / v.24, no.2, 2016 , pp. 147-155 More about this Journal
Abstract
Chaetominine is a quinazoline alkaloid originating from the endophytic fungus Aspergillus fumigatus CY018. In this study, we showed evidence that chaetominine has cytotoxic and apoptotic effects on human leukemia K562 cells and investigated the pathway involved in chaetominine-induced apoptosis in detail. Chaetominine inhibited K562 cell growth, with an $IC_{50}$ value of 35 nM, but showed little inhibitory effect on the growth of human peripheral blood mononuclear cells. The high apoptosis rates, morphological apoptotic features, and DNA fragmentation caused by chaetominine indicated that the cytotoxicity was partially caused by its pro-apoptotic effect. Under chaetominine treatment, the Bax/Bcl-2 ratio was upregulated (from 0.3 to 8), which was followed by a decrease in mitochondrial membrane potential, release of cytochrome c from mitochondria into the cytosol, and stimulation of Apaf-1. Furthermore, activation of caspase-9 and caspase-3, which are the main executers of the apoptotic process, was observed. These results demonstrated that chaetominine induced cell apoptosis via the mitochondrial pathway. Chaetominine inhibited K562 cell growth and induced apoptotic cell death through the intrinsic pathway, which suggests that chaetominine might be a promising therapeutic for leukemia.
Keywords
Cytotoxic; Apoptosis; Mitochondrial pathway; K562 cell;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Adams, J. M. and Cory, S. (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26,1324-1337.   DOI
2 Araujo, A. J., de Souza, A. A., da Silva Junior, E. N., Marinho-Filho, J. D., de Moura, M. A., Rocha, D. D., Vasconcellos, M. C., Costa, C. O., Pessoa, C., de Moraes, M. O., Ferreira, V. F., de Abreu, F. C., Pinto, A. V., Montenegro, R. C., Costa-Lotufo, L. V. and Goulart, M. O. (2012) Growth inhibitory effects of 3'-nitro-3-phenylamino norbeta- lapachone against HL-60: a redox-dependent mechanism. Toxicol. In Vitro 26, 585-594.   DOI
3 Babu, Y. R., Bhagavanraju, M., Reddy, G. D., Peters, G. J. and Prasad, V. V. (2014) Design and synthesis of quinazolinone tagged acridones as cytotoxic agents and their effects on EGFR tyrosine kinase. Arch. Pharm. (Weinheim) 347, 624-634.   DOI
4 Beesoo, R., Neergheen-Bhujun, V., Bhagooli, R. and Bahorun, T. (2014) Apoptosis inducing lead compounds isolated from marine organisms of potential relevance in cancer treatment. Mutat. Res. 768, 84-97.   DOI
5 Belofsky, G. N., Anguera, M., Jensen, P. R., Fenical, W. and Köck, M. (2000) Oxepinamides A-C and fumiquinazolines H-I: bioactive metabolites from a marine isolate of a fungus of the genus Acremonium. Chemistry 6, 1355-1360.   DOI
6 Brown, J. M. and Attardi, L. D. (2005) The role of apoptosis in cancer development and treatment response. Nat. Rev. Cancer 5, 231-237.   DOI
7 Chau, M., Phan, K. and Nguyen, D. (2005) Marine natural products and their potential application in the future. AJSTD 22, 297-311.
8 Choi, D. W., Lim, M. S., Lee, J. W., Chun, W., Lee, S. H., Nam, Y. H., Park, J. M., Choi, D. H., Kang, C. D., Lee, S. J. and Park, S. C. (2015) The Cytotoxicity of Kahweol in HT-29 Human Colorectal Cancer Cells Is Mediated by Apoptosis and Suppression of Heat Shock Protein 70 Expression. Biomol. Ther. (Seoul) 23, 128-133.   DOI
9 Czabotar, P. E., Lessene, G., Strasser, A. and Adams, J. M. (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49-63.   DOI
10 Dalla Via, L., Garcia-Argaez, A. N., Martinez-Vazquez, M., Grancara, S., Martinis, P. and Toninello, A. (2014) Mitochondrial permeability transition as target of anticancer drugs. Curr. Pharm. Des. 20, 223-244.   DOI
11 Danial, N. N. and Korsmeyer, S. J. (2004) Cell death: critical control points. Cell 116, 205-219.   DOI
12 Finkel, T., Serrano, M. and Blasco, M. A. (2007) The common biology of cancer and ageing. Nature 448, 767-774.   DOI
13 Helleday, T., Petermann, E., Lundin, C., Hodgson, B. and Sharma, R. A. (2008) DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 8, 193-204.   DOI
14 Jang, Y. J., Won, J. H., Back, M. J., Fu, Z., Jang, J. M., Ha, H. C., Hong, S., Chang, M. and Kim, D. K. (2015) Paraquat Induces Apoptosis through a Mitochondria-Dependent Pathway in RAW264.7 Cells. Biomol. Ther. (Seoul) 23, 407-413.   DOI
15 Jiao, R. H., Xu, S., Liu, J. Y., Ge, H. M., Ding, H., Xu, C., Zhu, H. L. and Tan, R. X. (2006) Chaetominine, a cytotoxic alkaloid produced by endophytic chaetomium sp. IFB-E015. Org. Lett. 8, 5709-5712.   DOI
16 Kaminskyy, V., Kulachkovskyy, O. and Stoika, R. (2008) A decisive role of mitochondria in defining rate and intensity of apoptosis induction by different alkaloids. Toxicol. Lett. 177, 168-181.   DOI
17 Kroemer, G., Galluzzi, L. and Brenner, C. (2007) Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99-163.   DOI
18 Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S. and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489.   DOI
19 Lamkanfi, M., Festjens, N., Declercq, W., Vanden Berghe, T. and Vandenabeele, P. (2007) Caspases in cell survival, proliferation and differentiation. Cell Death Differ. 14, 44-55.   DOI
20 Lemasters, J. J. (2005) Dying a thousand deaths: redundant pathways from different organelles to apoptosis and necrosis. Gastroenterology 129, 351-360.   DOI
21 Liu, Z., Zhao, Y., Li, J., Xu, S., Liu, C., Zhu, Y. and Liang, S. (2012) The venom of the spider Macrothele raveni induces apoptosis in the myelogenous. Leuk. Res. 36, 1063-1066.   DOI
22 Lu, Y., Zhu, Y., Jiao, R., Tan, R., Yao, L. And Hu, W., inventors; Univ. East. China Science & Tech. and Univ. Nanjing, assignee. [Method of preparing fumigaclavine C by symbiotic aspergillus fumigatus of sea crab and culture medium of fumigaclavine C]. Chinese patent CN 103849663. 2014 Jun 11. Chinese.
23 Luo, M., Liu, X., Zu, Y., Fu, Y., Zhang, S., Yao, L. and Efferth, T. (2010) Cajanol, a novel anticancer agent from Pigeonpea [Cajanus cajan (L.) Millsp.] roots, induces apoptosis in human breast cancer cells through a ROS-mediated mitochondrial pathway. Chem. Biol. Interact. 188, 151-160.   DOI
24 Luo, S.-P., Peng, Q.-L., Xu, C.-P., Wang, A.-E. and Huang, P.-Q. (2014) Bio-inspired step-economical, redox-economical and protectinggroup- free enantioselective total syntheses of (-)-chaetominine and analogues. Chin. J. Chem. 32, 757-770.   DOI
25 Martinou, J. C. and Youle, R. J. (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell 21, 92-101.   DOI
26 Riedl, S. J. and Salvesen, G. S. (2007) The apoptosome: signalling platform of cell death. Nat. Rev. Mol. Cell Biol. 8, 405-413.
27 Nakao Y, Kuo J, Yoshida, W. Y., Kelly, M. and Scheuer, P. J. (2003) More kapakahines from the marine sponge Cribrochalina olemda. Org. Lett. 5, 1387-1390.   DOI
28 Newman, D. J. and Cragg, G. M. (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75, 311-335.   DOI
29 Pradelli, L. A., Beneteau, M. and Ricci, J. E. (2010) Mitochondrial control of caspase-dependent and -independent cell death. Cell. Mol. Life Sci. 67, 1589-1597.   DOI
30 Rieger, A. M., Nelson, K. L., Konowalchuk, J. D. and Barreda, D. R. (2011) Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J. Vis. Exp. 50, e2597.
31 Rovini, A., Savry, A., Braguer, D. and Carre, M. (2011) Microtubuletargeted agents: When mitochondria become essential to chemotherapy. Biochim. Biophys. Acta 1807, 679-688.   DOI
32 Sarfaraj, H. M., Sheeba, F., Saba, A. and Mohd, S. K. (2012) Marine natural products: a lead for anti-cancer. Indian J. Geomarine Sci. 41, 27-39.
33 Urra, F. A., Cordova-Delgado, M., Pessoa-Mahana, H., Ramirez-Rodriguez, O., Weiss-Lopez, B., Ferreira, J. and Araya-Maturana, R. (2013) Mitochondria: a promising target for anticancer alkaloids. Curr. Top. Med. Chem. 13, 2171-2183.   DOI
34 Vinothkumar, S. and Parameswaran, P. S. (2013) Recent advances in marine drug research. Biotechnol. Adv. 31, 1826-1845.   DOI
35 Zhang, L., Wang, H., Xu, J., Zhu, J. and Ding, K. (2014) Inhibition of cathepsin S induces autophagy and apoptosis in human glioblastoma cell lines through ROS-mediated PI3K/AKT/mTOR/p70S6K and JNK signaling pathways. Toxicol. Lett. 228, 248-259.   DOI
36 Wink, M. (2007) Molecular modes of action of cytotoxic alkaloids: from DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance. Alkaloids Chem. Biol. 64, 1-47.   DOI