Browse > Article
http://dx.doi.org/10.4062/biomolther.2011.19.3.336

Antioxidative Constituents of the Aerial Parts of Galium spurium  

Yang, Seok-Won (College of Pharmacy, Woosuk University)
Park, Sae-Rom (College of Pharmacy, Woosuk University)
Ahn, Dal-Rae (College of Pharmacy, Woosuk University)
Yang, Jae-Heon (College of Pharmacy, Woosuk University)
Kim, Dae-Keun (College of Pharmacy, Woosuk University)
Publication Information
Biomolecules & Therapeutics / v.19, no.3, 2011 , pp. 336-341 More about this Journal
Abstract
As part of an ongoing search for natural plants with antioxidant compounds by measuring the radical scavenging effect on 1,1-diphenyl- 2-picrylhydrazyl (DPPH), a total extract of the twigs of Galium spurium L. (Rubiaceae) was found to show potent antioxidant activity. Subsequent activity-guided fractionation of the methanolic extract led to the isolation of nine compounds, asperulosidic acid methyl ester (1), asperuloside (2), caffeic acid (3), kaempferol-3-O-L-rhamnopyranoside (4), quercetin-3-O-[${\alpha}$-Lrhamnopyranosyl($1{\rightarrow}6$)-${\beta}$-D-glucopyranoside] (5), isorhamnetin-3-O-glucopyranoside (6), quercetin-3-O-${\alpha}$-L-rhamnopyranoside (7), kaempferol-3-O-[${\alpha}$-L-rhamnopyranosyl($1{\rightarrow}6$)-${\beta}$-D-glucopyranoside] (8), and quercetin (9). Their structures were elucidated by spectroscopic studies. Compounds 1, 3-8 were isolated for the first time from this plant. Among them, compounds 3 and 9 showed the significant radical scavenging effects on DPPH, and compounds 3 and 7 showed the potent riboflavin originated superoxide quenching activities.
Keywords
Galium spurium L.; Rubiaceae; Antioxidant activity; DPPH radical; Superoxide quenching activity;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, L., Komagoe, K., Fujita, Y. and Okuda, T. (1989) Studies on inhibition mechanism of autooxidation by tannins and fl avonoids. V. Radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37, 1919-1921.   DOI
2 Zhang, L., Zhang, W. P., Chen, K. D., Qian, X. D. Fang, S. H. and Wei, E. Q. (2007) Caffeic acid attenuates neuronal damage, astrogliosis and glial scar formation in mouse brain with cryoinjury. Life Sci. 80, 530-537.   DOI
3 Monika, L. L., Zbigniew, S. and Halina, B. P. (2010) Influencn of vitamin C on markers of oxidative stress in the earliest period of ischemic stroke. Pharmacol. Rep. 62, 751-756.   DOI
4 Salvatore, R., Carmine, I., Maya, M., Nedjalka H., Simeon, P. and Mincho, A. (2000) Triterpene saponins and iridoid glucosides from Galium rivale. Phytochemistry 54, 751-756.   DOI
5 Suganya, T., Siriporn, O. and Sombat C. (2007) Studies on antioxidative activity of certain plants in Thailand: Mechanism of antioxidant action of guava leaf extract. Food Chemistry 103, 381-388.   DOI
6 Sul, D., Kim, H. S., Lee, D., Joo, S. S., Hwang, K. W. and Park, S. Y. (2009) Protective effect of caffeic acid against beta-amyloidinduced neurotoxicity by the inhibition of calcium infl ux and tau phosphorylation. Life Sci. 84, 257-262.   DOI
7 Takeda, Y., Shimidzu, H., Mizuno, K., Inouchi S., Masuda, T., Hirata, E., Shinzato, T., Aramoto, M. and Otsuka, H. (2002) An iridoid glucoside dimer and non-glycosidic iridoid from the leaves of Lasianthus wallichii. Chem. Pharm. Bull. 50 1395-1397.   DOI
8 Wu, Z. J., Ouyang, M. A. and Yang, C. R. (1999) Polyphenolic constituents of Salvia onchifolia. Acta Bot. Yunnan 21, 393-398.
9 Ternai, B. and Markham, K. R. (1976) Carbon-13 NMR studies of fl avonoids- I: flavones and flavonols. Tetrahedron 32, 565-569.   DOI
10 Wagner, C., Fachinetto, R., Dalla, C. C. L., Brito, V. B., Severo, D., de Oliveira, C. D. G., Morel, A. F., Nogueira, C. W. and Rocha, J. B. (2006) Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro. Brain Res. 1107, 192-198.   DOI
11 Yoon, T. J., Lee, C. K., Park, T. K. and Lee, K. H. (2005) Immunostimulant and anti-tumor activity of crude extracts of Galium aparine L. Korean J. Pharmacogn. 36, 332-337.   과학기술학회마을
12 Jang, K. G., Oh, H., Ko, E. K., Kang, K. H., Park, S. E., Oh, M. H. and Kim, Y. C. (2002) Free radical scavengers from the leaves of Albizzia julibrissin. Korean J. Pharmacogn. 33, 28-30.   과학기술학회마을
13 Kim, H. K., Kang, B. J., Park, K. J., Ko, B. S. and Whang, W. K. (1998) Anti-Herpes simplex virus type 1 (HSV-1) effect of isorhamnetin 3-O-$\beta$-D-glucopyranoside isolated from Brassica rapa. J. Pharm. Soc. Korea 42, 607-612.   과학기술학회마을
14 Kim, S. H., Hwang, K. T. and Park, J. C. (1992) Isolation of fl avonoids and determination of rutin from the leaves of Ulmus parvifl ora. Korean J. Pharmacogn. 23, 229-233.
15 Koyama, J., Ogura, T. and Tagahra, K. (1993) Anthraquinones of Galium spurium. Phytochemistry 33, 1540-1542.   DOI
16 Lee, H. J., Lee, S. K., Choi, Y. J., Jo, H. J., Kang, H. Y. and Choi, D. H. (2007) Extractives from the bark of Platycarya strobilacea. Journal of Korean Forest Society 96, 408-413.   과학기술학회마을
17 Liu, C. M., Zheng, Y. L., Lu, J., Zhang, Z. F., Fan, S. H., Wu, D. M. and Ma, J. Q. (2010b) Quercetin protects rat liver against lead-induced oxidative stress and apoptosis. Environ. Toxicol. Pharmacol. 29, 158-166.   DOI
18 Lee, J. H., Ku, C. H., Baek, N. I., Kim, S. H., Park, H. W. and Kim, D. K. (2004) Phytochemical constituents from Diodia teres. Arch. Pharm. Res. 27, 40-43.   과학기술학회마을   DOI
19 Lee, S. K., Park, W. G. and Bae, Y. S. (1997) Procyanidins from Lindera obtusiloba bark. Mokchae konghak 25, 110-116.
20 Liu, C. M., Ma, J. Q. and Sun, Y. Z. (2010a) Quercetin protects the rat kidney against oxidative stress-mediated DNA damage and apoptosis induced by lead. Environ. Toxicol. Pharmacol. 30, 264-271.   DOI
21 Cai, X., Yang, J. and Rao, Q. (2009) Studies on flavonoids from Galium aparine. Chin. Pharm. J. 44, 1475-1477.
22 Choi, D. S., Kim, S. J. and Jung, M. Y. (2001) Inhibitory activity of berberine on DNA strand cleavage induced by hydrogen peroxide and cytochrome c. Biosci. Biotechnol. Biochem. 65, 452-455.   DOI
23 Choi, E. M. (2010) Protective effect of quercitrin against hydrogen peroxide-induced dysfunction in osteoblastic MC3T3-E1 cells. Exp. Toxicol. Pathol. in press.
24 Chung, Y. C., Chen S. J., Hsu, C. K., Chang, C. T. and Chou, S. T. (2005) Studies on the antioxidative activity of Graptopetalum paraguayense E. Walther. Food Chemistry 91, 419-424.   DOI
25 Deliorman, D., Calis, I. and Ergun, F. (2001) Iridoids from Galium aparine. Pharm. biol. 39, 234-235.   DOI
26 El-Naggar, L. J. and Beal, J. L. (1980) Iridoids. A review. J. Nat. Prod. 43, 649-706.   DOI
27 Hur, J. M., Park, J. C. and Hwang, Y. H. (2001) Aromatic acid and fl avonoids from the leaves of Zanthoxylum piperitum. Nat. Prod. Sci. 7, 23-26.
28 Ginnopolitis, C. N. and Ries, S. K. (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. 59, 309-314.   DOI
29 Hasan, A., Anme, K., Jay, M. and Voirin, V. (1995) Flavonoid glycosides and anthraquinone from Rumex chalepensis. Phytochemistry 39, 1211-1213.   DOI
30 Hong, H. K., Kwak, J. H., Kang, S. C., Lee, J. W., Park, J. H., Ahn, J. W., Kang, H. S., Choung, E. S. and Zee, O. P. (2008) Antioxidative constituents from the whole plants of Euphorbia supina. Korean J. Pharmacogn. 39, 260-264.   과학기술학회마을
31 Janbaz, K. H., Saeed, S. A. and Gilani, A. H. (2004) Studies on the protective effects of caffeic acid and quercetin on chemical-induced hepatotoxicity in rodents. Phytomedicine 5, 424-430.
32 Branen, A. L. (1975) Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil. Chem. Soc. 52, 59-63.   DOI