Browse > Article
http://dx.doi.org/10.11625/KJOA.2015.23.4.923

Emission Patterns of Carbon Dioxide & Methane by Liquid Pig Manure Treatments in Paddy Soil  

Oh, Seung-Ka (경남과학기술대학교 식물자원학과)
Yoon, Dong-Kyung (경남과학기술대학교 식물자원학과)
Lee, Eun-Jung (경남과학기술대학교 식물자원학과)
Lee, Byung-Jin (경남과학기술대학교 종자실용화연구소)
Jeon, Seung-Ho (경남과학기술대학교 종자실용화연구소)
Cho, Young-Son (경남과학기술대학교 농학한약자원학부)
Publication Information
Korean Journal of Organic Agriculture / v.23, no.4, 2015 , pp. 923-938 More about this Journal
Abstract
This study was conducted to serve as the basis for establishing a standard cultivation, which enhances the alternative utilization of pig manure, a major cause of environmental pollution, by finding a means for reducing greenhouse gas emissions for eco-friendly cultivation. In a laboratory, $CH_4$ and $CO_2$ emission patterns were investigated corresponding to incremental pig manure treatments in paddy soil. The emissions peaked 12 to 27 days after manure application in the 100~400% applications. It was found that increasing applications of pig manure resulted an increase in $CH_4$ and $CO_2$ emissions. Additionally, application of more than 150% emitted a larger amount of these gasses than applying chemical fertilizer. However, the test application of 100% pig manure emitted a smaller amount of $CH_4$ and hence Global Warming Potential (GWP) than those emitted by chemical fertilizer. If appropriate amount of fertilization is applied in compliance with the standard application rate, the pig manure may be effective in reducing greenhouse gas emissions and the soil environment made more favorable than with the use of chemical fertilizer.
Keywords
carbon dioxide; greenhouse gas; liquid pig manure; paddy soil; methane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Anzai, T. and N. Matsumoto. 1987. Effects of annual application of swine urine on the physico-chemical properties and the heavy metal contents of paddy soil. Soil Sci. Plant Nutr. 58: 433-439.
2 Bennett, W. F., B. B. Tucker, and A. B. Maunder. 1990. Modern grain sorghum production. Iowa state Univ. Press, Ames.
3 Bernal M. and Kirchmann H. 1992. Carbon and nitrogen mineralization and ammonia volatilization from fresh, aerobically and anaerobically treated pig manure during incubation with soil. Biology & Fertility of soils. 13(3): 135-141.   DOI
4 Bowman, A. F. 1990. Soils and the greenhouse effect. John Willy. New York pp. 25-192.
5 Denier van der Gon, H. A. C. , H. U. Neue 1995. Methane emission from a wetland rice field as affected by salinity. Plant and Soil. Issue2. 170: 307-313.   DOI
6 Gilmour, J. T., Mauromoustakos, A., Gale, P.M., and Norman, R. J. 1998. Kinetics of Xrop Residue Decomposition: Variability among Crops and years. Soil Sci. Am. J. 62(3): 750-755.   DOI
7 GIR. 2014. National Greenhouse Gas Inventory Report of Korea.
8 IPCC. 2007. Climate Change 2007: The Physical Science Basis, IPCC Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and NewYork, NY, USA.
9 Jensen, L. S., I. S. Pederson, T .B. Hansen, and N. E. Nielsen. 2000. Turnover and fate of 15N-labelled cattle slurry ammonium-N applied in the autumn to winter wheat. Eur. J. Agron. 12: 23-35.   DOI
10 Kanazawa, S. and T. Yoneyama. 1980. Microbial degradation of 15N-labeled rice residues in soil during two tears, incubation under flooded and upland conditions. Transformation of residue nitrogen. Soil Sci. Plant Nutr. 26: 241-254.   DOI
11 Kim, H. K., B. H. Kim, S. K. Kim, H. W. Kim, J. D. Park, and K. J. Choi. 2012. The evolution of methane emitted at paddy soil applied to organic matter while rice cultivated organically, Korean J. Soil Sci. Fert. fall conference. p. 273.
12 Kim, J. G., K. B. Lee, D .B. Lee, S. B. Lee, and S. Y. Na. 2004. Influence of liquid pig manure of rice growth and nutrient movement in paddy soil under different drainage conditions. Korean J. Soil Sci. Fert. 37: 97-103.
13 Kim, J. H., C. H. Park, J. D. Han, and B. G. Park. 2001. Determining the optimum number of livestock considering regional pollution load. Korean J. Agricultural Management Policy. 28: 255-277.
14 Ko J. Y., H. W. Kang, U. G. Kang, H. M. Park, D. K. Lim, and K. B. Park. 1998. National Yeongnam Agricultural Exeperiment Station, RDA, Milyang, 627-130, Korea. Korean Joural of Environmental Agriculture. 17(3): 227-233.
15 Lee, K. B., D. B. Lee, J. G. Kim, and Y. W. Kim. 1997. Effect of Rice Cultural Patterns on Methane Emission from a Korea Paddy Soil. J. Korea Soil Sci. March. 30: 35-39.
16 National Yeongnam Agricultural Experiment Station. 1992. Research Report: 669-673.
17 Lim, C. H., S. Y. Kim, J. Gutierrez, and P. J. Kim. 2010. Impact of soil salinity on $CH_4$ production in coastal reclaimed land. Spring symposium proceeding of Korean J. Soil Sci. Fert.: 330-331.
18 Lindau, C. W., R. D. Delaune, D. P. Al Ford, and H. K. Kludze. 1994. Methane production and mitigation in rice. $CH_4$ and $N_2O$. 79-86.
19 Lowrance, R., J. C. Johnson, Jr., G. L. Newton, and R. G. Williams. 1998. Denitrification from soils of a year-round forage production system fertilized with liquid daity manure. J. Environ. Qual. 27: 1504-1511.
20 NIAST. 2003. Agricultural utilization of organic wastes and it's environment risk assessments. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea. pp. 49-103.
21 Park, B. K., J. S. Lee, N. J. Cho, and K. Y. Jung. 2001. Effect of Liquid Pig Manure on growth of rice and infiltration water quality. 34(3): 153-157.
22 Park, J. M., T. J. Lim, S. B. Kang, I. B. Lee, and Y. I. Kang. 2010. Effect if pig slurry fertigation on soil chemical properties and yield of tomato (Lycopersicon esculentum Mill.). Korea J. Soil Sci. Fert. 43: 488-493.
23 RDA. 2002. Guidelines for applying liquid manure. Rural Development Administration. Suwon. Korea.
24 Schutz H., A. SHolzapfel-pschorn, R. Conrad, H. Rennenberg, and W. Seiler 1989. A 3 year continuous record on the influence of daytime, season and fertilizer treatment on methane emission rates from an Italian rice paddy field. Journal of geophysical Research. 94: 16405-16415.   DOI
25 Ushio, S., N. Yosimura, K. Saito, and N. Nagajinma. 2000. Nitrogen decomposition rate of animal wastes composts and dry wastes for 141 days in summer, and estimation. Soil Sci. Plant Nutr. 71: 249-253.
26 Shin, Y. K., S. H. Yun, M. E. Park, and B. L. Lee. 1996. Mitigation Options for Methane Emission from Rice Field in korea. Ambio. 25(4): 289-291.
27 SRES. 2000: IPCC. Special Report on Emission Scenarios.
28 Trumbore, S. E. 1995. Use of isotopes and tracers in the study of emission and consumption of trace gases in terrestrial environments. pp. 291-326. In Matson, P. A. and R. C. Harriss. (ed.). Biogenic trace gases: Measuring emission from soil and water. Blackwell science Ltd. Osney Mead, Oxford, UK.
29 Ward, D. M. and M. R. Winfrey. 1985. Interactions between methanogenic and sulfate reducing bacteria in sediments, pp. 141-179. In H. W. Jannasch and P. J. Williams (eds.), Advances in Aquatic Microbiol. Academic Press, London, UK.
30 Yagi, K. and K. Minami.1991. Emission and production of methane in the paddy fields of japan. SARQ 25: 165-171.
31 Yang S. S. and H. L. Chang. 1998. Effect of environmental conditions on methane production and emission from paddy soil. Agriculture, Ecosystems and Environment 69: 69-80.   DOI
32 Yang, C. H., S. B. Lee, T. K. Kim, J. H. Ryu, C. H. Yoo, J. J. Lee, J. D. Kim, and K. Y. Jung. 2008. The effect of tillage methods after application of liquid pig manure on silage barley growth and soil environment in paddy soil. Korean J. Soc. Soil Sci. Fert. 41: 285-291.
33 Yoon, S. K. 1994. Behavior of NO_(3)-N and accompanying cations derived from urea and animal manure under upland condition. doctoral dissertation. Seoul National University.