Browse > Article

Toxicity and safety classification of 4 animal medicines - Focusing on venoms from bee, snake, blister beetle and scolopendrid -  

Park, Yeongchul (GLP Center, Catholic University of Daegu)
Lee, Sundong (Dept. of Preventive Korean Medicine, School of Korean Medicine, Sangji University)
Publication Information
Journal of Society of Preventive Korean Medicine / v.20, no.1, 2016 , pp. 125-144 More about this Journal
Abstract
Objectives : About 13% of the medicines used by traditional korean medicines(TKM), are called animal medicines and are derived from non-herbal sources such as animals and insects. However, the clinical use of these preparations from animal medicines is often based on tradition and belief, rather than on evidence of toxicity and efficacy. As a result, animal medicines containing toxin have caused serious problems from injecting patients with venom. Here, various venoms frequently used as TKM were reviewed in terms of their instinct toxity and tried to estimate their safety classification. Methods : The estimation of safety classification was based on human equivalent dose(HED)-based MOS (margin of safety) and clinical dose applied for patients. Results and Conclusions : Except that of snake venom due to no clinical dose, they were evaluated as class 3 for bee venom, class 4 for cantharidin, toxin from blister beetle, and class 1 for venom from scolopendrid. In conclusion, animal medicines showed a wide range of safety classification from class 1 to class 4. This wide range is estimated to result from extremely limited applications of each venom for patients because of their strong toxicity. However, it should be cautious for application in clinics since animal medicines can produce anaphylactic reactions particularly after veinous administration even with a tiny amount of venom.
Keywords
Animal medicine(venoms from bee, snake, blister beetle, scolopendrid); Toxicity; Safety classification;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Lu Q, Clemetson JM, Clemetson KJ. Snake venoms and hemostasis. J Thromb Haemost. 2005;3:1791-1799.   DOI
2 http://everything.explained.today/Snake_venom/
3 Rodriguez-Ithurralde D, Silveira R, Barbeito L, Dajas F. Fasciculin, a powerful anticholinesterase polypeptide from Dendroaspis angusticeps venom. Neurochemistry International. 1983;5(3):267-274.   DOI
4 Harel M, Kleywegt GJ, Ravelli BG, Silman I, Sussman JL. Crystal structure of an acetylcholinesterase-fasciculin complex: interaction of a three-fingered toxin from snakevenom with its target. Structure. 1995;3(12):1355-1366.   DOI
5 Bolioli B, Castello ME, Jerusalinsky D, Rubinstein M, Medina J, Dajas F. Neurochemical and behavioral correlates of unilateral striatal acetylcholinesterase inhibition by fasciculin in rats. Brain Research. 1989;504(1):1-6.   DOI
6 Du XY, Clemetson JM, Navdaev A, Magnenat EM, Wells TN, Clemetson KJ. Qphioluxin, a convulxinlike C-type lectin from Ophiophagus hannah(King cobra) is a powerful platelet activator via glycoprotein VI. J. Biol. Chem. 2002;277:35124-35132.   DOI
7 Lee WH, Zhang Y, Wang WY, Xiong YL, Gao R. Isolation and properties of a blood coagulation factor X activator from the venom of king cobra (Ophiophagus hannah). Toxicon. 1995;33:1263-1276.   DOI
8 Jin Y, Lee WH, Zeng L, Zhang Y. Molecular characterization of L-amino acid oxidase from king cobra venom. Toxicon. 2007;50: 479-489.   DOI
9 Chen YH, Chu ST. Snake venom cardiotoxin induces G-actin polymerization. Biochimica et Biophysica Acta (BBA) -General Subjects. 1988;966(2):266-268.   DOI
10 Dufton MJ, Hider RC, The structure and pharmacology of elapid cytotoxins. In: Harvey, A.L., (Ed.), International Encyclopaedia of Pharmacology and Therapeutics, Snake Toxins. Pergamon Press, New York. 1991;134:259-302.
11 Broad AJ, Sutherland SK, Coulter AR. The lethality in mice of dangerous Australian and other snake venoms. Toxicon. 1979;17:664-667.   DOI
12 Minton S and Minton MR. Venomous Reptiles. Scribners New York. 1969.
13 노희목, 김승모, 최홍식. 반묘와 가공반묘의 단회투여 독성에 대한 비교연구. Kor. J. Herbology. 2009;24(3):1-12.
14 Liu R, Li JCT, Jiang X. Investigation of two blood proteins binding to Cantharidinand Norcantharidin by multispectroscopic and chemometrics methods Journal of Luminescence. 2015;157:398-410.   DOI
15 Mebs D, Pogoda W, Schneider M, Kauert G. Cantharidin and demethyl cantharidin (palasonin) content of blister beetles (Coleoptera: Meloidae) from southern Africa. Toxicon. 2009;53:466-468.   DOI
16 Norman N. A Review: Cantharidin Poisoning. S Afr Farm Pract. 1989:10:70-73.
17 박영철, 이선동. 독성대사체를 생성하는 다빈도사용 한약재의 안전성등급화; 천궁, 당귀, 감초, 숙지황을 중심으로. 대한예방한의학회지. 20151;9(2):23-133.
18 이용석, 이영준, 한창현. 봉독을 이용한 무작위배정 임상연구의 국내 현황. Journal of Korean Medicine Rehabilitation. 2013;23(3):87-106.
19 Shipolini RA. "Biochemistry of bee venom". In: Handbook of natural toxins, Vol. 2, AT. Tn, (ed.), Marcel Dekker, New York. 1984; 49-85.
20 Phong Huy Duc Dinh PDH, Corraza F, Mestdagh K, Kassengera Z, Doyen V, Michel O. Validation of the cantharidin-induced skin blister as an in vivo model of inflammation. British Journal of Clinical Pharmacology. 2011;72(6):912-920.   DOI
21 Binder R. "Malpractice-in dermatology". Cutis; Cutaneous Medicine for the Practitioner. 1979;23(5): 663-666.
22 Tagwireyi D, Ball DE, Loga PJ, Moyo S. Cantharidin poisoning due to Blister beetle ingestion. Toxicon. 2000;38:1865-1869.   DOI
23 Fisch HP, Reutter FW, Gloor F. Lesions of the kidney and efferent urinary tract due to cantharidin. Schweiz. Med. Wschr. 1978;108: 1664-1667.
24 Carver JD, Polak A. Cantharidin poisoning. Brit Med J. 1954;2:1386-1387.   DOI
25 Presto AJ and Muecke EL. A dose of Spanish Fly. J Am Med Assoc. 1970;214 (3):591-592.   DOI
26 Nickolls LC, Donald T. Poisoning by cantharidin. Brit Med J. 1954;2:1384-1386.   DOI
27 Roeder T. Octopamine in invertebrates. Prog. Neurobiol. 1999;59:533-561.   DOI
28 Sherman RA. Encyclopedia of Insects (Second Edition) Chapter 163 -Medicine, Insects in. 2009;618-620.
29 Mahmoud Abdu Al-Samie, Mohamed Ali. Studies on Bee Venom and Its Medical Uses. International Journal of Advancements in Research & Technology. 2012;1(2):1-15.
30 Dotimas EM and Hider RC. Honeybee venom. Bee World. 1987;68(2):51-70.   DOI
31 Jiangtao Dong, Bihua Ying, Shaokang Huang, Shuangqin Ma, Peng Long, Xijuan Tu, Wenchao Yang, Zhenhong Wu, Wenbin Chen, Xiaoqing Miao. High-performance liquid chromatography combined with intrinsic fluorescence detection to analyse melittin in individual honeybee (Apis mellifera) venom sac. Journal of Chromatography B 1002. 2015; 139-143.   DOI
32 Terwilliger TC, Weissman L, Eisenberg D. The structure of melittin in the form I crystals and its implication for melittin's lytic and surface activities. Biophys. J. 1982; 37:353-361.   DOI
33 Gajski G. Vera Garaj-Vrhovac. Melittin: A lytic peptide with anticancer properties Environ Toxicol Pharmacol. 2013;36(2):697-705.   DOI
34 Sanchez-Barbudo IS, Camarero PR, Garcia- Montijano M, Mateo R. Possible cantharidin poisoning of a great bustard (Otis tarda). Toxicon. 2012;59:100-103.   DOI
35 Ratcliffe NA, Mello CB, Garcia ES, Butt TM, Azambuja P. Insect natural products and processes: New treatments for human disease. Insect Biochemistry and Molecular Biology. 2011;41(10):747-769.   DOI
36 Moed L, Shwayder TA, Chang MW. Cantharidin revisited: A blistering defense of an ancient medicine (PDF). Archives of Dermatology. 2001;137(10):1357-1360.
37 https://en.wikipedia.org/wiki/Cantharidin
38 대한한의학회. 한의사 의료분쟁 사례분석 및 대처방안 연구. 2013;123-124.
39 Hao J, Liu MG, Yu YQ, Cao FL, Li Z, Lu ZM, Chen, J. Roles of peripheral mitogenactivated protein kinases in melittin-induced nociception and hyperalgesia. Neuroscience. 2008;152:1067-1075.   DOI
40 Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT. Therapeutic application of antiarthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. Ther. 2007;115:246-270.   DOI
41 Tessier DC, Thomas DY, Khouri HE, Laliberie F, Vernet T. Ehanced secretion from insect cells of a foreign protein fused to the honeybee melittinsignal peptide. Gene. 1991; 98(2):177-183.   DOI
42 Clapp LE, Klette KL, DeCoster MA, Bernton E, Petras JM, Dave JR, Laskosky MS, Smallridge RC, Tortella FC. Phospholipase A2-induced neurotoxicity in vitro and in vivo in rats. Brain Res. 1995;693:101-111.   DOI
43 Barker SA, Bayyuk SI, Brimacombe JS, Palmer DJ. Characterization of the products of the action of bee venom hyaluronidase. Nature. 1963;199:693-694.   DOI
44 Hider RC, Ragnarsson U. A proposal for the structure of apamin. FEBS Lett. 1990;111: 189-193.
45 Zhang L, Krnjevic K. Apamin depresses selectively the after-hyperpolarization of cat spinal motoneurons. Neuroscience Letters. 1987;74(1):58-62.   DOI
46 이선동, 박영철. 한약독성학 I. 한국학술정보(주) 2012:16-22. ISBN 978-89-268-3190-8.
47 Still J. Use of animal products in traditional Chinese medicine: environmental impact and health hazards. Complementary Therapies in Medicine. 2003;11:118-122.   DOI
48 서부일, 최호영. 임상한방본초학. 도서출판 영림사, 2004.
49 박영철. 독성학의 분자-생화학적 원리, 한국학술정보(주), 2010;30-31. ISBN 978-89-268-1259-4.
50 신승우. 오공독에 관한 문헌적 고찰. 대한면역약침학회지. 2012;1(1):81-91
51 Noda N, Yashiki Y, Nakatani T, Miyahara K, Du XM. A novel quinoline alkaloid possessing a 7-benzyl group from the centipede. Scolopendra subspinipes. Chemical & Pharmaceutical Bulletin. 2001;49:930-931.   DOI
52 Zlotkin E. Comprehensive Molecular Insect Science;5.6 -Scorpion Venoms. Pharmacology. 2005; 5:173-220.
53 Cooper AM, Fox GA, Nelsen DR, Hayes WK. Variation in venom yield and protein concentration of the centipedes Scolopendra polymorpha and Scolopendra subspinipes. Toxicon. 2014;82:30-51.   DOI
54 www.epharmacognosy.com
55 https://en.wikipedia.org/wiki/Scolopendra_subspinipes
56 Bush SP, King BO, Norris RL & Stockwell SA. "Centipede envenomation". Wilderness & Environmental Medicine. 2001;12(2):93-99.   DOI
57 Bettini S. Arthropod Venoms in Handbook of Experimental Pharmacology/ Handbuch der experimentellen Pharmakologie. 1978.
58 Hugues M, Romey G, Duval D, Vincent JP, Lazdunski M. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. Proc. Natl. Acad. Sci. U.S.A. 1982; 79:1308-1312.   DOI
59 박영철. 이선동. 한약의 안전성 등급화를 위한 evidence-based approach: Human equivalent dose-based the margin of safety. 대한예방한의학회지. 2013:17(3):1-12.
60 박영철, 이선동. 한약의 안전성 등급화를 통한 근거중심실용의학적 연구(1). J Korean Med. 2014; 35(1):114-123.   DOI
61 Banks BE, Dempsey CE, Vernon CA, Warner JA, Yamey J, Anti-inflammatory activity of bee venom peptide 401 (mast cell degranulating peptide) and compound 48/80 results from mast cell degranulation in vivo. Br. J. Pharmacol. 1990;99:350-354.   DOI
62 Kondo T, Ikenaka K, Fujimoto I, Aimoto S, Kato H, Ito K, Taguchi T, Morita T, Kasai M, Mikoshiba K. K+ channel involvement in induction of synaptic enhancement by mast cell degranulating (MCD) peptide. Neurosci. Res. 1992;13:207-216.   DOI
63 Bidard JN, Mourre C, Gandolfo G, Schweitz H, Widmann C, Gottesmann C, Lazdunski M. Analogies and differences in the mode of action and properties of binding sites (localization and mutual interactions) of two K+ channel toxins. MCD peptide and dendrotoxin I. Brain Res. 1989;495:45-57.   DOI
64 Shkenderov S, Koburova K, Adolapin: a newly isolated analgetic and antiinflammatory polypeptide from bee venom. Toxicon. 1982; 20:317-321.   DOI
65 Koburova KL, Michailova SG, Shkenderov SV. Further investigation on the antiinflammatory properties of adolapin-bee venom polypeptide. Acta Physiol. Pharmacol. Bulg. 1985;11:50-55.
66 Hoffman DR. Honey bee venom allergy: immunological studies of systemic and large local reactions. Ann. Allergy. 1978;41:278-282.
67 Kwon YB, Lee JH, Han HJ, Mar WC, Kang SK, Yoon OB, Beitz AJ, Lee JH. The watersoluble fraction of bee venom produces antinociceptive and anti-inflammatory effects on rheumatoid arthritis in rats. Life Science. 2002;71:191-204.   DOI
68 Sharma HC and Singh OP. Medicinal properties of some lesser known but important bee products. Proc. 2nd Int. Conf. Apiculture in Trop. Climates. IBRA, New Delhi. 1983;694-702.
69 Krell R. Value-added products from beekeeping. SAO Agricultural Services Bulletin. Food and Agriculture Organization of the United Nation. Rome. 1996.
70 Mandal MD, Mandal S. Honey: its medicinal property and antibacterial activity. Asian Pacific Journal of Tropical Biomedicine. 2011; 1(2):154-160.   DOI
71 Smallheer BA. Bee and Wasp Stings : Reactions and Anaphylaxis. Critical Care Nursing Clinics of North America. 2013;25(2):151-164.   DOI
72 Schmidt JO, Allergy to venomous insects (In. The Hive and the Honey Bee, Edited by Graham JM) Hamilton, Illinois. 1999.
73 Simons FE. Anaphylaxis. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S161-181.   DOI
74 Simons FE, Frew AJ, Ansotegui IJ, Bochner BS, Golden DB, Finkelman FD, Leung DY, Lotvall J, Marone G, Metcalfe DD, Muller U, Rosenwasser LJ, Sampson HA, Schwartz LB, van Hage M, Walls AF. Practical allergy (PRACTALL) report: risk assessment in anaphylaxis. Allergy. 2008;63:35-37.
75 Manivannan V, Hyde RJ, Hankins DG, Bellolio MF, Fedko MG, Decker WW, Campbell RL, Epinephrine use and outcomes in anaphylaxis patients transported by emergency medical services. American Journal of Emergency Medicine. 2014;32:1097-1102.   DOI
76 Chen CY, Chen WX, Sun X. Comparison of anti-inflammatory, analgesic activities, anaphylactogenicity and acute toxicity between bee venom and its peptides. Zhongguo Zhong Xi Yi Jie He Za Zhi. 1993;13:226-227.
77 The European Academy of Allergy and Clinical Immunology (EAACI). Allergy definition. Available at http://www.eaaci.org/patients/allergic-and-immunologic-diseases-and-causes/what-is-an-allergy.html
78 Phyllis AB and James AB. Prescription for Nutritional Healing (Third Edition). Typesetter: Jary A. Rosenberg. AVERY, a member of PUTMAN INC. New York, 2000.
79 Golden D. Anaphylaxis to Insect Stings. Immunology and Allergy Clinics of North America. 2015;35(2):287-302.   DOI
80 Tyson C. Brown, MD, Michael S. Tankersley, MD. The sting of the honeybee: an allergic perspective. Ann Allergy Asthma Immunol. 2011;107:463-471   DOI
81 Rose A. Bees in balance. Starboint Enterprises Ltd. Bethesda, Maryland. 1994.
82 Cuende E, Fraguas J, Pena JE, Pena F, Garcia JC, Gonzalez M. Beekeeper' arthropathy. J. Rheumatol. 1999;26:2684-2690.
83 Schumacher MJ, Schmidt JO, Egen WB. Lethality of "killer" bee stings. Nature. 1989; 337:413   DOI
84 Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RC. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu. Rev. Genomics Hum. Genet. 2009;10:483-511.   DOI
85 Won CH, Choi ES, Hong SS. Efficacy of bee venom injection for osteoarthritis patients. J Korean Rheum assoc. 1999;6:218-226
86 이종선, 조용선, 송기훈, 황수란, 박진, 윤석권, 김한욱. 건조밀봉독(아피톡신주) 주사에 의한 이물 육아종. 대한피부과학회지. 2011;49(10):943-947.
87 Bauchot R. Snakes: A Natural History. New York City, NY, USA: Sterling Publishing Co, Inc. 1994;194-209. ISBN 1-4027-3181-7.
88 Stewart CJ. Snake bite in Australia: fi rst aid and envenomation management. Accident Emergency Nursing. 2003;11:106-111.   DOI
89 Fry BG, Casewell NR, Wuster W, Vidal N, Young B, Jackson TN. The structural and functional diversification of the Toxicofera reptile venom system. Toxicon. 2012;60:434-448.   DOI
90 Bottrall JL, Madaras F. Biven CD, Venning MG, Mirtschin PJ. Proteolytic activity of Elapid and Viperid Snake venoms and its implication to digestion. Journal of Venom Research. 2010;1:18-28.
91 Campbell CH. Symptomatology, pathology and treatment of the bites of elapid snakes. In: Lee CY, (Ed.), Handbook of Experimental Pharmacology, Snake Venoms. Springer, Berlin. 1979;52:898-921.
92 http://snakesuntamed.webr.ly/viperids
93 http://en.wikipedia.org/wiki/Viperidae#Venom
94 Warrell DA. Snake bite. www.thelancet.com. 2010;75.