Browse > Article
http://dx.doi.org/10.5532/KJAFM.2018.20.3.252

Generation of daily temperature data using monthly mean temperature and precipitation data  

Moon, Kyung Hwan (National Institute of Horticulture and Herbal Science Rural Development Administration)
Song, Eun Young (National Institute of Horticulture and Herbal Science Rural Development Administration)
Wi, Seung Hwan (National Institute of Horticulture and Herbal Science Rural Development Administration)
Seo, Hyung Ho (National Institute of Horticulture and Herbal Science Rural Development Administration)
Hyun, Hae Nam (Major of plant resources and environment Jeju National University)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.20, no.3, 2018 , pp. 252-261 More about this Journal
Abstract
This study was conducted to develop a method to generate daily maximum and minimum temperatures using monthly data. We analyzed 30-year daily weather data of the 23 meteorological stations in South Korea and elucidated the parameters for predicting annual trend (center value ($\hat{U}$), amplitude (C), deviation (T)) and daily fluctuation (A, B) of daily maximum and minimum temperature. We use national average values for C, T, A and B parameters, but the center value is derived from the annual average data on each stations. First, daily weather data were generated according to the occurrence of rainfall, then calibrated using monthly data, and finally, daily maximum and minimum daily temperatures were generated. With this method, we could generate daily weather data with more than 95% similar distribution to recorded data for all 23 stations. In addition, this method was able to generate Growing Degree Day(GDD) similar to the past data, and it could be applied to areas not subject to survey. This method is useful for generating daily data in case of having monthly data such as climate change scenarios.
Keywords
Weather generation; Daily maximum temperature; Daily minimum temperature; Growing Degree Days(GDD);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Soltani, A., and G. Hoogenboom, 2003: A statistical comparison of the stochastic weather generators WGEN and SIMMETEO. Climate Research 24(3), 215-230.   DOI
2 Stockle, O., R. Nelson, M. Donatelli, and F. Castellvi, 2001: ClimGen: a flexible weather generation program. Proceedings of the Second International Symposium on Modelling Cropping Systems, July 16-18, 2001, Florence, Italy, 229-230.
3 Teh, C., 2006: Introduction to mathematical modeling of crop growth. BrownWalker Press, Florida, USA.
4 Wallis, T. W., and J. F. Griffiths, 1995: An assessment of the weather generator (WXGEN) used in the erosion/productivity impact calculator (EPIC). Agricultural and Forest Meteorology 73(1-2), 115-133.   DOI
5 Williams, J., P. Dyke, and C. Jones, 1983: EPIC-A model for assessing the effects of erosion on soil productivity. Developments in Environmental Modelling. Elsevier. 553-572.
6 Zhang, Q., B. Singh, S. Gagnon, J. Rousselle, N. Evora, and S. Weyman, 2004: The application of WGEN to simulate daily climatic data for several Canadian stations. Canadian Water Resources Journal 29(1), 59-72.   DOI
7 Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A. Weaver, and M. Wehner, 2013: Chapter 12 - Long-term climate change: Projections, commitments and irreversibility. In: Climate Change 2013: The Physical Science Basis. IPCC Working Group I Contribution to AR5. Eds. IPCC, Cambridge: Cambridge University Press.
8 Bae, D.-H., I.-W. Jung, and W. T. Kwon, 2007: Generation of high resolution scenarios for climate change impacts on water resources(I): Climate scenarios on each sub-basins. Journal of Korea Water Resources Association 40, 191-204.   DOI
9 Brisson, N., B. Mary, D. Ripoche, M. H. Jeuffroy, F. Ruget, B. Nicoullaud, et al. 1998: STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 18, 311-346.   DOI
10 Carter, T., M. Posch, and H. Tuomenvirta, 1995: SILMUSCEN and CLIGEN user's guide: Guidelines for the construction of climatic scenarios and use of a stochastic weather generator in the Finnish Research Programme on Climate Change (SILMU). Painatuskeskus, Publications of the Academy of Finland.
11 Fatichi, S., V. Y. Ivanov, and E. Caporali, 2011: Simulation of future climate scenarios with a weather generator. Advances in Water Resources 34, 448-467.   DOI
12 Hong, E. M., J. Y. Choi, S. H. Lee, S. H. Yoo, and M. S. Kang, 2009: Estimation of paddy rice evapotranspiration considering climate change using LARS-WG. Journal of The Korean Society of Agricultural Engineers 51, 25-35.
13 Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie, 2003: The DSSAT cropping system model. European journal of agronomy 18(3-4), 235-265.   DOI
14 Lee, J.-Y., 2003: Stochastic simulation of daily weather variables. Water Engineering Research 4, 111-126.
15 Kilsby, C., P. Jones, A. Burton, A. Ford, H. Fowler, C. Harpham, P. James, A. Smith, and R. L. Wilby, 2007: A daily weather generator for use in climate change studies. Environmental Modelling & Software 22(12), 1705-1719.   DOI
16 Kim, J., and J. I. Yun, 2008: On mapping growing degree-days (GDD) from monthly digital climatic surfaces for South Korea. Journal of Agricultural and Forest Meteorology 10, 1-8.   DOI
17 Kim, J., and J. I. Yun, 2016: The use and abuse of climate scenarios in agriculture. Korean Journal of Agricultural and Forest Meteorology 18, 170-178.   DOI
18 Lobell, D. B., C. B. Field, K. N. Cahill, and C. Bonfils, 2006: Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties. Agricultural and Forest Meteorology 141, 208-218.   DOI
19 Mavromatis, T., and J. W. Hansen, 2001: Interannual variability characteristics and simulated crop response of four stochastic weather generators. Agricultural and forest meteorology 109, 283-296.   DOI
20 Meehl, G. A., R. Moss, K. E. Taylor, V. Eyring, R. J. Stouffer, S. Bony, and B. Stevens, 2014: Climate model intercomparisons: Preparing for the next phase. Eos, Transactions American Geophysical Union 95(9), 77-78.
21 Moon, K. H., E. Song, I. Sonn, S. Wi, S. Oh, and H. N. Hyun, 2017. Estimation of Markov chain and gamma distribution parameters for generation of daily precipitation data from monthly data. Journal of Agricultural and Forest Meteorology 19, 27-35.   DOI
22 Rosenzweig, C., J. W. Jones, J. L. Hatfield, A. C. Ruane, K. J. Boote, P. Thorburn, J. M. Antle, G. C. Nelson, C. Porter, S. Janssen, S. Asseng, B. Basso, F. Ewert, D. Wallach, G. Baigorria, and J. M. Winter, 2013: The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agricultural and Forest Meteorology 170, 166-182.   DOI
23 Moss, R. H., J. A. Edmonds, K. A. Hibbard, M. R. Manning, S. K. Rose, D. P. Van Vuuren, T. R. Carter, S. Emori, M. Kainuma, T. Kram, G. A. Meehl, J. F. B. Thomson, J. P. Weyant, and T. J. Wilbanks, 2010: The next generation of scenarios for climate change research and assessment. Nature 463, 747pp.   DOI
24 Richardson, C. W., and D. A. Wright, 1984: WGEN: A model for generating daily weather variables. ARS-8. Washington, D.C.: USDA Agricultural Research Service.
25 Rosenzweig, C., J. Elliott, D. Deryng, A. C. Ruane, C. Müller, A. Arneth, K. J. Boote, C. Folberth, M. Glotter, N. Khabarov, K. Neumann, F. Piontek, T. A. M. Pugh, E. Schmid, E. Stehfest, H. Yang, and J. W. Jones, 2014: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences 111, 3268-3273.   DOI
26 Seino, H., 1993: An estimation of distribution of meteorological elements using GIS and AMeDAS data. Journal of Agricultural Meteorology 48(4), 379-383.   DOI
27 Semenov, M. A., and E. M. Barrow, 1997: Use of a stochastic weather generator in the development of climate change scenarios. Climatic change 35(4), 397-414.   DOI
28 Semenov, M. A., E. M. Barrow, and LARS-WG, 2002: A stochastic weather generator for use in climate impact studies. User Man Herts UK.