Browse > Article

Characteristics of ${\delta}$-Endotoxin Protein Produced from Bacillus thuringiensis subsp. kurstaki KB099 Isolate Showing High Bioactivity against Spodoptera litura  

Jung, Sun-Young (Agro-Materials Safety Evaluation Division, National Academy of Agricultural Science Department of Agro-Food Safety, Rural Development Adminstration)
Seo, Mi-Ja (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University)
Youn, Young-Nam (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University)
Yu, Yong-Man (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University)
Publication Information
The Korean Journal of Pesticide Science / v.14, no.4, 2010 , pp. 446-455 More about this Journal
Abstract
The characteristics of parasporal inclusion body from Bacillus thuringiensis subsp. kurstaki KB099 isolate which is high bioactive to the tobacco cutworm, Spodoptera litura, were examined. Parasporal inclusion of B. thuringiensis subsp. kurstaki KB099 isolate showed only 1 band at 130 kDa compared with B. thuringiensis subsp. kurstaki HD-l isolate producing 2 protein bands at 130 kDa and 60 kDa from by SDS-PAGE analysis without any enzyme treatment. Also, we confirmed that gut extract of sensitive S. litura KB099 isolate had digested only 60 kDa ${\delta}$-endotoxin protein. When the digestive enzyme of sensitive insect responsible for parasporal inclusion from KB099 and HD-l isolate was treated to each of them, protein band 60 KDa of KB099 was maintained up to 12 hours but all bands of HD-l were disappeared within 6 hours. In KB099 isolate, 6 genes (Cry1Aa, Cry1Ab, Cry1Ac, Cry1C, Cry1D and Cry1I) were identified by PCR analysis. Also, $Cry^-$ mutant of KB099 isolate was investigated by phase- contrast microscope, SDS-PAGE and PCR.
Keywords
Bacillus thuringiensis; Bioactivity; PCR; Plasmid DNA; Spodoptera litura;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Visser, B., E. Munsterman, A. Stocker and W. G. Dirkse (1990) A novel Bacillus thuringiensis gene encoding a Spodoptera exigua- specific crystal protein. J. Bacteriol. 172:6783∼6788.   DOI
2 Ferre, J., M. D. Real, J. van Rie, S. Jansens and M. Perferoen (1991) Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. U.S.A 88:5119∼5123.   DOI   ScienceOn
3 Kim, T. H., D. A. Kim, K. S. Kim, M. J. Seo, Y. N. Youn, and Y. M. Yu (2009) Characterization of Bacillus thuringiensis subsp. aizawai CAB109 isolate with bioactivities to Spodoptera litura and Spodoptera exigua (Lepidoptera: Noctuidae). Korean J. Appl. Entomol. 48(4):509∼517.   과학기술학회마을   DOI
4 Neema, A., M. Pawan and Raj K. Bhatnagar (2002) Interaction of gene - cloned and insect cell- expressed aminopeptidase N of Spodoptera litura with insecticidal crystal protein Cry1C. Appl. Environ. Microbiol. 68:4583∼4592.   DOI   ScienceOn
5 Sanchis, V., D. Lereclus, G. Menou, J. Chaufaux, S. Guo, and M. M. Lecadet (1989) Nucleotide sequence and analysis of the N-terminal coding region of the Spodoptera-active $\delta$ -endotoxin gene of Bacillus thuringiensis aizawai. Mol. Microbiol. 3:229∼238.   DOI   ScienceOn
6 Visser, B, T. van der Salm, W. van den Brink and G. Folkers (1988) Genes from Bacillus thuringiensis entomocidus coding for insect-specific toxins. Mol. Gen. Genet. 212:219∼224.   DOI
7 Smith, R. A. and G. A. Couche (1991) The phylloplane as a source of Bacillus thuringiensis. Appl. Environ. Microbiol. 57:311∼315.
8 Tabshnik, B. E. (1994) Evolution of resistance to Bacillus thuringiensis. Ann. Rev. Entomol. 39:47∼79.   DOI   ScienceOn
9 Vadlamudi, R. K., E. Weber, I. Ji, T. H. Ji and L. A. Bulla Jr (1995) Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis, J. Biol. Chem. 270:5490∼5494.   DOI
10 Zeigler, D. R. (1999) Bacillus genetic stock center catalog of strains. Part 2:Bacillus thuringiensis and Bacillus cereus, 7th ed. Bacillus Genetic Stock Center, Columbus, Ohio.
11 Zhong, C., D. J. Ellar, A. Bishop, C. Johnson, S. Lin and E. R. Hart (2000) Characterization of a Bacillus thuringiensis $\delta$-endotoxin which is toxic to insects in three orders. J. Invertebr. Pathol. 76:131∼139.   DOI   ScienceOn
12 Zouari, N. and J. Samir (1997) Purification and immunological characterization of particular delta-endotoxins from three strains of Bacillus thuringiensis. Biotechol. Lett. 19(8):825 ∼829.   DOI   ScienceOn
13 Peyronmet, O., V. Vachon, J. L. Schwartz, and R. Laprade (2001) Ion channels induced in planar lipid bilayers by the Bacillus thuringiensis toxin Cry1Aa in the presence of gypsy moth (Lymantria dispar) brush border membrane, J. Membr. Biol. 184:45∼54.   DOI   ScienceOn
14 Ohba, M. and K. Aizawa (1978) Physiology of spore forming bacteria associated with insects minimal nutritional requirements for growth sporulation and parasporal crystal formation in Bacillus thuringiensis. Appl. Environ. Microbiol. 28:124-128.
15 Ohgushi, A., H. Satioh, W. Naoya., A. Uemori. and M. Ohba (2005) Cloning and characterization of two novel genes, cry24B and s1orf2, from a mosquitocidal strain of Bacillus thuringiensis serovar sotto. Curr. Microbiol. 51:131∼136.   DOI   ScienceOn
16 Pedro, D., L. Loeza, B. Graciela, C. Jorge, O. Z. Alejandra, M. Victor, A. Baizabal, J. Juan, A. Valdez and J. E. Lopez-Mezaa (2005) The plasmid pBMBt1 from Bacillus thuringiensis subsp. darmstadiensis (INTA Mo14-4) replicates by the rolling-circle mechanism and encodes a novel insecticidal crystal protein-like gene. Plasmid. 25:229∼240.
17 Porcar, M., J. Iriarte, V. Cosmao Dumanoir, M. D. Ferrandis, M. -M. Lecadet, J. Ferré, and P. Caballero (1999) Identification and characterization of the new Bacillus thuringiensis serovars pirenaica (serotype H57) and iberica (serotype H59). J. Appl. Micro. 87:640∼648.   DOI   ScienceOn
18 Rajagopal, R., S. Sivakumar, A. Neema, M. Pawan, l. Raj, and K. Bhatnagar (2002) Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor, J. Biol. Chem. 277:46849∼46851.   DOI
19 Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. R. Baum and J. Feitelson (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. 62.
20 Raymond, M. (1985) Presentation d'un programme d'analyse log-probit pour micro-ordinnateur. Cah. ORSTOM, Ser. Ent. Med. et Parasitol. 22:117∼121.
21 Schnepf, H. E. (1995) Bacillus thuringiensis toxins; regulation, activities and structural diversity. Curr. Opin. Biotech. 6:305 ∼312.   DOI   ScienceOn
22 Kim, D. A., J. S. Kim, M. R. Kil, S. K. Paek, S. Y. Choi, D. Y. Jin, Y. N. Youn, I. C. Hwang, and Y. M. Yu (2008) Characterization of new Bacillus thuringiensis isolated with bioactivities to tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuidae), Korean J. Appl. Entomol. 47:87∼93.   과학기술학회마을   DOI
23 Krieg, A., A. Huger, G. Langenbruch and W. Schnetter (1983) Bacillus thuringiensis var. tenebrionis; A new pathotype effective against larvae of Colepoptera. J. Appl. Entomol. 96:500∼508.
24 Kumar N. S., and G. Venkateswerlu (1998) Endogenous proteaseactivated 66-kDa toxin from Bacillus thuringiensis subsp. kurstaki active against Spodoptera littoralis. FEMS Microbiol Lett. 159:113∼120.   DOI   ScienceOn
25 Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680∼685.   DOI   ScienceOn
26 Lereclus, D., M. M. Lecadet, J. Ribier, and R. Dedonder (1982) Molecular relationships among plasmids of Bacillus thuringiensis: Conserved sequences through 11 crystalliferous strains, Mol. Gen. Genet. 186:391∼398.   DOI   ScienceOn
27 Luo, K., D. Banks, and M. J. Adang (1999) Toxicity, binding, and permeability analyses of four Bacillus thuringiensis Cry1 delta -endotoxins using brush border membrane vesicles of Spodoptera exigua and Spodoptera frugiperda. Appl. Environ. Microbiol. 65:457∼464.
28 Minamikawa, H. (1937) Survey on the tobacco cutworm, Spodoptera litura Fabricius Taiwan Central Res. Ins. Agr. Report 70:1∼66.
29 Martin, P. A. W. and R. S. Travers (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55:2437∼2442.
30 McDowell, D. G. and N. H. Mann (1991) Characterization and sequence analysis of a small plasmid from Bacillus thuringiensis var. kurstaki HD1-DIPEL, Plasmid 25:113∼120.   DOI   ScienceOn
31 Mochida, O. and T. Okada (1974) A bibliography of Spodoptera spp. (Lepidoptera: Noctuidae). Misc. Bull. Kyushu Nat. Agr. Expt. Sta. 49:1∼110.
32 Gonzalez, J. M. and B. C. Carlton (1980) Patterns of plasmid DNA in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid 3:92∼98.   DOI   ScienceOn
33 Hofte, H. and H. R. Whiteley (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Mol. Biol. 53:242∼255.
34 http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/
35 Hurley J. M., L. A. Bulla, and R. E. Andrews (1987) Purification of the mosquitocidal and cytolytic proteins of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 53:1316∼1321.
36 Jalali, S. K., K. S. Mohan, S. P. Singh, T. M. Manjunath and Y. Lalitha (2004) Baseline-susceptibility of the old-world bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) populations from India to Bacillus thuringiensis Cry1Ac insecticidal protein. Crop Protect. 23:53∼59.   DOI   ScienceOn
37 Jensen, S., L. Cavarec, M. P. Gassama, and T. Heidmann (1995) Defective I elements introduced into Drosophila as transgenes can regulate reactivity and prevent I-R hybrid dysgenesis. Europ. Dros. Res. Conf. 14:198.
38 Karamanlidou, G., A. Lambropoulos, S. Koliais, T. Manousis, D. Ellar and C. Kastritsis (1991) Toxicity of Bacillus thuringiensis to laboratory populations of the olive fruit fly (Dacus oleae). Appl. Envir. Microbiol. 57:2277∼2282.
39 Kim, D. A., J. S. Kim, M. R. Kil, Y. N. Youn, D. S. Park, and Y. M. Yu (2006) Isolation and activity of insect pathogenic Bacillus thuringiensis strain from soil. Korean J. Appl. Entomol. 45(3):1-6   과학기술학회마을
40 Khan, S. A. (1997) Rolling-circle replication of bacterial plasmids, Microbiol. Mol. Biol. Rev. 61:442∼455.
41 Kim, H. S., D. W. Lee, S. D. Woo, Y. M. Yu, and S. K. Kang (1998) Biological, immunological, and genetic analysis of Bacillus thuringiensis isolated form granny in Korea. Curr. Microbiol. 37:52∼57.   DOI   ScienceOn
42 Aronson, A. I., E.-S. Han, W. McGaughey and D. Johnson (1991) The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects. Appl. Environ. Microbiol. 57:981∼986.
43 Ben-Dov, E., A. Zaritsky, E. Dahan, Z. Barak, R. Sinai, R. Manasherob, A. Khamraev, E. Troitskaya, A. Dubitsky, N. Berezina, and Y. Margalith (1997) Extended screening by PCR for seven cry–group genes from field-collected strains of Bacillus thuringiensis. Appl. Environ. Microbiol. 63:4883 ∼4890.
44 Brian, A., and C. Federici (1998) Transgenic Bt crops and resistance:Broadscale use of pest-killing plants to be true test. California Agriculture 52:14∼20.
45 Burton, S. L., D. J. Ellar, J. Li, and D. J. Derbyshire (1999) N-Acetylgalactosamine on the putative insect receptor aminopeptidase N is recognized by a site on the domain III lectinlike fold of a Bacillus thuringiensis insecticidal toxin. J. Mol. Biol. 287:1011∼1022.   DOI   ScienceOn
46 Carozzi, N. B., V. C. Kramer, G. W. Warren, S. Evola, and M.G. Koziel (1991) Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl. Environ. Microbiol. 57:3057∼3061.
47 Choi, S. Y., M. S. Cho, T. H. Kim, and Y. M. Yu (2008) Bioactive characterization of Bacillus thuringiensis subsp. kurstaki CAB133 isolated from domestic soil. Kor. J. Appl. Entomol. 47:175∼813.   과학기술학회마을   DOI
48 Glare, T. R. and M. O'Callaghan (2000) Bacillus thuringiensis: Biology, ecology and safety. Chichester: Wiley pp. 350
49 Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. van Rie, D. Lereclus, J. Baum and D. H. Dean (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. 62:807∼813.
50 Edyta, K., K. Adam Z. Jadwiga Z. Kazimierz and H. Paetzl (2007) Analysis of cry gene profiles in Bacillus thuringiensis strains isolated during epizootics in Cydia pomonella L. Curr. Microbiol. 55:217∼222.   DOI   ScienceOn