Browse > Article

Identification and Antioxidant Activity using Electron Spin Resonance Spectrometry of Antioxidant Producing Marine Actinomycetes Streptomyces sp. ACT-18  

Kim, Man-Chul (Department of Aquatic Life Medicine & Marine and Environmental Research Institute, Jeju National University)
Kim, Ju-Sang (Department of Aquatic Life Medicine & Marine and Environmental Research Institute, Jeju National University)
Harikrishnan, Ramasamy (Department of Aquatic Life Medicine & Marine and Environmental Research Institute, Jeju National University)
Han, Yong-Jae (Department of Aquatic Life Medicine & Marine and Environmental Research Institute, Jeju National University)
Heo, Moon-Soo (Department of Aquatic Life Medicine & Marine and Environmental Research Institute, Jeju National University)
Publication Information
Microbiology and Biotechnology Letters / v.38, no.1, 2010 , pp. 24-31 More about this Journal
Abstract
For the research of the natural marine antioxidant, an antioxidant-producing marine actinomycetes was isolated from sea water in Jeju coastal area. The strain was identified based on 16S rDNA sequencing, the morphology by a method of scanning electron microscopy, physiological and biochemical characteristics and cellular fatty acid analysis. The isolated strain ACT-18 was gram positive, aerobic, non-motile spores. Substrate mycelia are dark green and yellow gray aerial mycelia. The cell size of the strain was $0.5{\sim}1.0\;{\mu}m$. 16S rDNA sequence analysis showed that were Gram-positive bacteria grouped on Streptomyces sp. Results of cellular fatty acid analysis showed that major cellular fatty acids were $C_{15:0}$ anteiso (39.33%), $C_{16:1}$ cis 9 (11.96%), $C_{16:0}$ (13.08%) and $C_{17:0}$ anteiso (10.99%). The antioxidant activity of methanol extract from Streptomyce sp. ACT-18 was evaluated by measuring 1,1-diphenyl- 2-picrylhydrazyl (DPPH), hydroxyl, and alkyl radical scavenging activity using an electron spin resonance (ESR) spectrometer. DPPH radical scavenging activity of SBME (Streptomyces Broth Methanol Extract) A-18 was 46% at 0.1 mg/mL. Hydroxyl radical scavenging activity of SBME A-18 was 63% at 0.1 mg/mL. Alkyl radical scavenging activity of SBME A-18 was 39% at 0.1 mg/mL.
Keywords
Identification; antioxidant activity; marine; Streptomyces; ESR;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Alderson, G., D. A. Ritchie, C. Cappellano, R. H. Cool, N. M. Ivanova, A. S. Huddleston, C. S. Flaxman, V. Kristufek, and A. Lounes. 1993. Physiology and genetics of antibiotic production and resistance. Res. Microbiol. 144: 665-672.   DOI   ScienceOn
2 Beppu, T. and S. Horinouchi. 1991. Molecular mechanisms of the A-factor-dependent control of secondary metabolism in Streptomyces. Planta Medica. 57: 44-47.
3 Hopwood, D. A. 1987. Towards an understanding of gene switching in Streptomyces, the basis: of sporulation and antibiotic production. Proc. R. Soc. Lond. Series B. 23: 2257-2269.
4 Ito, N. S., A. Fukushima, A. Hasegawa, M. Shibata, and O. T. Ogis. 1983. Carcinogenicity of butylated hydroxy antisole in F344 rats. J. Nat. Cancer Inst. 70: 343-347.
5 Kadiiska, M. B. and R. P. Masom. 2002. In vivo coppermediate free radical production: an ESR spin-trapping study. Spectrochim Acta A 58: 1227-1239.   DOI   ScienceOn
6 Okami, Y, and K. Hotta. 1988. Search and discovery of new antibiotics. pp. 33-67. In M. Goodfellow (ed.), Actinomycetes in biotechnology. Academic Press. London.
7 Okazaki, T. 1987. Rare actinomycetes, new breed of actinomycetes. J. Microorgainsm. 3: 453-461.
8 Roberfroid, M. and P. B. Colderon. 1995. In free radicals and oxidation phenomena in biological systems. University of Catholique de Louvain Brussels, New York, pp. 11-32.
9 Tsukamoto, M., S. Nakajima, H. Arakawa, Y. Sugiura, H. Suzuki, M. Hirayama, S. Kamiya, Y. Teshima, H. Kondo, K. Kojiri, and H. Suda. 1998. A new antitumor antibiotics, BE- 19412A, produced by a Streptomyces. J. Antibiotics. 51: 908-914.   DOI   ScienceOn
10 Branen, A. L. 1975. Toxicology and biochemistry of butylated hydroxyanisol and butylated hydroxytoluene. J. Am. Oil Chem. Soc. 52: 59-63.   DOI
11 Evans, P. and B. Halliwell. 2001. Micronutrients: oxidant/antioxidant status. British J. Nutr. 85: S67-S74.   DOI   ScienceOn
12 Choi, U. K., W. D. Ji, H. C. Chung, D. H. Choi, and Y. G. Chung. 1997. Optimization for pigment production and antioxidative activity of the products by Bacillus subtilis DC-2. J. Korean Soc. Food Nutr. 26: 1039-1043.
13 Hiramoto, K., H. Johkoh, K. I. Sako, and K. Kikugawa. 1993. DNA breaking activity of the carbon-centered radical generated from 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH). Free Radical Res. 19: 323-332.   DOI
14 Chang, H. B. and J. H. Kim. 2007. Antioxidant properties of dihydroherbimycin A from a newly isolated Streptomyces sp. Biotechnol Lett. 29: 599-603.   DOI   ScienceOn
15 Hayaski, K., K. Suzuki, M. Kawaguchi, T. Nakagima, T. Suzuki, M. Numata, and T. Nakamura. 1995. Isolation of antioxidant from Penicillium roquefortii IFO 5956. Biosci. Biotechnol. Biochem. 59: 312-320.
16 Nanjo, F., K. Goto, R. Seto, M. Suzuki, M. Sakai, and Y. Hara. 1996. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylydrazyl radical. Free Radical Bio. Med. 21: 895-902.   DOI   ScienceOn
17 Miller, L. and T. Berger. 1985. Bacterial identification by gas chromatography of whole cell fatty acid. Hewlett-Packard Application Note 228-241. Hewlett-Packard Co., Avondale, Pa.
18 Shirling, E. B. and D. Gottlieb. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313-340.   DOI
19 Janzen, E. G., D. L., Towner, and D. L. Haire. 1987. Detection of free radical generated from the in vitro metabolism of carbon tetrachloride using improved ESR spin trapping techniques. Free Radical Res. 3: 357-364.   DOI
20 Omura, S., A. Nakagawa, and N. Sadakane. 1979. Structure of herbimycin, a new ansamycin antibiotic. Tetrahedron Lett. 44: 4323-4326.
21 Ryu, B. H., H. S. Kim, J. S. Jung, S. H. Lee, and Y. A. Ji. 1987. Screening for antioxidant compounds from edible marine algae. Korean J. Food Sci. Technol. 23: 256-261.
22 Chang, H. B., S. C. Kim, and J. H. Kim. 2006. Chemical characteristics and biological activities of herbimycin A and dihydroherbimycin A produced by soil isolate Streptomyces sp. AO-0511. The Korean Journal of Microbiology. 42: 47-53.
23 Okami, Y., T. Okazaki, T. Kitahara, and H. Umezawa. 1976. Studies on marine microorganisms. A. new antibiotic, aplasmomycin, produced by a Streptomyces isolated shallow sea mud. J. Antibiotics. 29: 1019-1025.   DOI
24 Rosen, G. M. and E. J. Rauckman. 1984. Spin trapping of superoxide and hydroxyl radicals. In L. Packer (Ed.) Methods in enzymology, vol105. Academic Press, Orlando, FL. pp. 198-209.
25 Jones, G. H. 1985. Regulation of phenoxazinone synthase expression in Streptomyces antibiotics. J. Bacteriol. 163: 1215-1221.
26 Iwai, Y. and Y. Takahashi. 1992. Selection of microbial sources of bioactive compounds. pp. 281-302. In S. Omura (ed.), The Search for Bioactive Compounds from Microorganisms. Springer-Verlag, New York.
27 Frankel, E. N. 1996. Antioxidants in lipid foods and their on food quality. Food Chemistry. 57: 51-54.   DOI   ScienceOn