Browse > Article

Production of Inulooligosaccharides by Endoinulinase Expressed in Saccharomyces cerevisiae  

Kim Hyun-Chul (Department of Biomaterial Control, Dong-Eui University)
Kim Hyun-Jin (Department of Biotechnology & Bioengineering, Dong-Eui University)
Kim Byung-Woo (Department of Life Science & Biotechnology, Dong-Eui University)
Kwon Hyun-Ju (Department of Life Science & Biotechnology, Dong-Eui University)
Nam Soo-Wan (Department of Biotechnology & Bioengineering, Dong-Eui University)
Publication Information
Microbiology and Biotechnology Letters / v.33, no.4, 2005 , pp. 281-287 More about this Journal
Abstract
The endoinulinase gene (inu, 2.733 kb, EC 3.2.1.7) from Paenibacillus polymyxa was subcloned into an Escherichia coli-yeast shuttle vector with GALl promoter for the expression in Saccharomyces cerevisiae. The constructed plasmid, pYGENIU27 (8.6 kb) was introduced into S. cerevisiae SEY2102 cell and then the yeast transformant was selected on the synthetic defined media lacking uracil and on the inulin-containing media. The recombinant endoinulinase was predominantly localized in the periplasmic space of the yeast cell. The total activity of the endoinulinase reached 1.81 unit/ml by cultivation of yeast transformant on YPDG medium. The optimized conditions determined for the inulooligosaccharides (IOSs) production from inulin were as follows; pH, 8.0; reaction temperature, $45^{\circ}C$; inulin source, Jerusalem artichoke. Enzyme activity was stably maintained up to the pH of 10.0. Under the optimized condition and with endoinulinase of 36 unit/g-inulin, IOSs started to be produced after 10 min of enzymatic reaction. By the reaction with inulin, IOSs consisting of inulobiose (F2), inulotriose (F3), and inulotetraose (F4) were produced and F3 was the major product. Consequently, these data would be used as a fundamental parameters for the production of functional sweetener IOSs from inulin by recombinant yeast endoinulinase.
Keywords
Endoinulinase; Paenibacillus polymyxa; inulin; inulooligosaccharides; Saccharomyces cerevisiae;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Brevnova, E. E., D. G. Kozlov, B. D. Efremov, and S. V. Benevolensky. 1998. Inulase-secreting strain of Saccharomyces cerevisiae produces fructose. Biotechnol. Bioeng. 60: 492-497   DOI   ScienceOn
2 Eom, S. J., Y. M. Kwon and Y. J. Choi. 1995. Molecular cloning of Pseudomonas sp. inulinase gene and its expression in E. coli. Kor J. Appl. Microbiol. Biotechnol. 23: 550-555
3 Hirst, E. L., D. J. Mcgilvary and E. G V. Percival. 1950. Studies on fructosans. J. Chem. Soc. 72: 1279-1284
4 lto, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast ceils treated with alkali cations. J. Bacteriol. 153: 163-168   PUBMED
5 Jin, Z., J. Wang, B. Jiang, and X. Xu. 2005. Production of inulooligosaccharides by endoinulinases from Aspergillus jicuum. Food Res. Int. 38: 301-30   DOI   ScienceOn
6 Kim, D. H., Y. J. Choi, S. K. Song, and J. W. Yun. 1997. Production of inulo- oligosaccharides using endo-inulinase from Pseudomonas sp. Biotechnol. Left. 19: 369-371   DOI   ScienceOn
7 Kornfeld, R. and S. Kornfeld. 1985. Assembly of asparaginelinked oligosaccha- rides. Annu. Rev. Biochem. 54: 631-664   DOI   ScienceOn
8 Kwon, Y. M., H. Y. Kim and Y. J. Choi. 2000. Cloning and characterization of Pseudomonas mucidolens exoinulinase. J. Microbiol. Biotechnol. 10: 238-243
9 Ohta, K., S. Hamada, and T. Nakamura. 1993. Production of high concentrations of ethanol from inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 59: 729-733   PUBMED
10 Park, J. B. and Y. J. Choi. 1996. Purification and characterization of inulin fiuctotransferase (depolymerizing) from Arthrobacter sp. A-6. J. Microbial. Biotechnol. 6: 402-406
11 Scotti, P. A., M. Praestegaard, R. Chambert and M. R. Petit-Glatron. 1996. The targeting of Bacillus subtilis levansucrase in yeast is correlated to both the hydrophobicity of the signal peptide and the net charge of the N-terminus mature part. Yeast 12: 953-963   DOI   ScienceOn
12 Vandamme, E. J. and D. G. Derycke. 1983. Microbial inulinase: fermentation process, properties, and applications. Adv. Appl. Microbial. 29: 139-176   DOI   PUBMED
13 Bajpai, P. K. and P. Bajpai. 1991. Cultivation and utilization of Jerusalem artichoke for ethanol, single cell protein, and high fructose syrup production. Enz. Microbial. Technol. 13: 359-362   DOI   ScienceOn
14 Yun, J. W., Y. J. Choi, C. H. Song, and S. K. Song. 1999. Microbial production of inulooligosaccharides by an endoinulinase from Pseudomonas sp. expressed in Escherichia coli. J. Biosci. Bioeng. 87: 291-295   DOI   ScienceOn
15 Kanai, T., N. Ueki, T. Kawaguchi, Y. Teranishi, H. Atomi, C. Tomorbaatar, M. Ueda and A. Tanaka. 1997. Recombinant thermostable cycloinulooligosaccharide fructanotransferase produced by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 63: 4956-4960   PUBMED
16 Lim, C. K., H. C. Kim, K. H. Kim, B. W. Kim and S. W. Nam, 2004. Production of cyclofructan by cycloinulooligosaccharide fructanotransferase expressed in Saccharomyces cerevisiae. Kor. J. Micrbiol. Biotechnol. 32: 60-66
17 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 55: 952-959
18 Nam, S. W., H. Y. Park, J. H. Kim, J. H. Seo, N. S. Han and B. W. Kim. 2001. Expression of Bacillus macerans cyclodextrin glucanotransferase gene in Saccharomyces cerevisiae. Biotechnol. Left. 23: 727-730   DOI   ScienceOn
19 Emr, S. D., R. Schekman, M. C. Flessel, and J. Thorner. 1983. An MF${\alpha}$l-SUC2 (${\alpha}$-factor-invertase) gene fusion for study of protein localization and gene expression in yeast. Proc. Natl. Acad. Sci. USA. 80: 7080-7084
20 Kingsman, S. M., A. T. Kingsman, M. J. Dobson, J. Mellar and N. A. Roberts. 1985. Biotechnol. Genet. Eng. Rev. 3: 377-415   DOI   PUBMED   ScienceOn
21 Jeon, S. J., D. J. You, H. J. Kwon, S. Kanaya, N. Kunihiro, K. H. Kim, Y. H. Kim and B. W. Kim. 2002. Cloning and characterization of cycloinulooligosaccharide fructanotransferase (CFTase) from Bacillus polymyxa MGL21. J. Microbiol. Biotechnol. 12: 921-928
22 Nam, S. W., K. Yoda, and M. Yamasaki. 1993. Secretion and localization of invertase and inulinase in recombinant Saccharomyces cerevisiae. Biotechnol. Left. 15: 1049-1054   DOI   ScienceOn
23 Zhang, L., C. Zhao, D. Zhu, Y. Ohta, and Y. Wang. 2004. Purification and characterization of inulinase from Aspergillus niger AF10 expressed in Pichia pastoris. Protein Expression Purification 35: 272-275   DOI   ScienceOn
24 Kasturi, L., H. Chen and S. H. Shakin-eshleman. 1997. Regulation of N-linked core glycosylation : use of a sitedirected mutagenesis approach to identify Asn-Xaa-Ser/Thr sequons that are poor oligosaccharide acceptors. Biochem. J. 323: 415-419   DOI   PUBMED
25 Kim, Y. H., S. W. Nam, and B. H. Chung. 1998. Simultaneous saccharification of Inulin and ethanol fermentation by recombinant Saccharomyces cerevisiae secreting Inulinase. Biotechnol. Bioprocess Eng. 3: 55-60   DOI   ScienceOn
26 Han, Y. J., D. O. Kang, S. C. Lee, B. Y. Kim, H. H. Suh, J. M. Kim, T. I. Mheen and J. S. Ahn. 1994. Secretion of a Bacillus endoglucanase in Saccharomyces cerevisiae by its own signal sequence. J. Microbiol. Biotechnol. 4: 24-29