Browse > Article

Expression of Aspergillus awamori Glucoamylase Gene in an Industrial Strain of Saccharomyces cerevisiae  

Ghang Dong-Myeong (Department of Biological Sciences, Institute of Resources Plant, Chonnam National University)
Lee Su-A (Department of Biological Sciences, Institute of Resources Plant, Chonnam National University)
Chun Young-Hyun (Department of Biological Sciences, Institute of Resources Plant, Chonnam National University)
Chin Jong-Eon (Department of Cosmetology, Dongkang College)
Lee Hwanghee Blaise (Department of Biological Sciences, Institute of Resources Plant, Chonnam National University)
Bai Suk (Department of Biological Sciences, Institute of Resources Plant, Chonnam National University)
Publication Information
Korean Journal of Microbiology / v.41, no.2, 2005 , pp. 146-151 More about this Journal
Abstract
To construct an amylolytic industrial strain of Saccharomyces cerevisiae, the glucoamylase cDNA gene (GAl) from Aspergillus awamori was expressed under the control of the alcohol dehydrogenase gene promoter (ADC1p) and integrated into the chromosomes of industrial S. cerevisiae. An integrative cassette lacking bacterial ampicillin resistance gene but containing the GA1 gene, $\delta$ sequences of Ty1 retrotransposon as target sites for homologous recombination and S. cerevisiae aureobasidin A resistance gene (AUR1-C) as the selection marker was constructed to obtain a strain eligible for commercial use. Industrial S. cerevisiae transformed with this 15-integrative cassette efficiently secreted glucoamylase into the medium and grew on starch as the sole carbon source. The transformants were mitotically stable for 100 generations in nonselective medium.
Keywords
amylolytic Saccharomyces cerevisiae; glucoamylase gene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hashida-Okado, T., A. Ogawa, M. Endo, R. Yasumoto, K. Takesako, and I. Kato. 1996. AUR1, a novel gene conferring aureobasidin resistance on Saccharomyces cerevisiae: A study of defective morphologies in Aurlp-depleted cells. Mol. Gen. Genet. 251, 236-244   PUBMED
2 Ness, F., F. Lavallee, D. Dubourdieu, M. Aigle, and L. Dulau. 1993. Identification of yeast strains using the polymerase chain reaction. J. Sci. Food Agric. 62, 89-94   DOI   ScienceOn
3 Nunberg, J.H., J.H. Meade, G. Cole, F.C. Lawyer, P. McCabe, V. Schweickart, R. Tal, V.P. Wattman, J.E. Flatgaard, and M.A. Innis. 1984. Molecular cloning and characterization of the glucoamylase gene of Aspergillus awamori. Mol. Cell. Biol. 4, 2306-2315   DOI   PUBMED
4 Parekh, R.N., M.R. Shaw, and K.D. Wittrup. 1996. An integration vector for tunable, high-copy, stable integration in the dispersed Ty $\delta$ sites of Saccharomyces cerevisiae. Biotechnol. Prog. 12, 16-21   DOI   PUBMED   ScienceOn
5 Sambrook, J. and D.W. Russell. 2001. Molecular cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, New York
6 Yamasaki, Y., Y. Suzuki, and J. Ozawa. 1977. Three forms of $\alpha$-glucosidase and a glucoamylase from Aspergillus awamori. Agric. Biol. Chem. 41, 2149-2161   DOI
7 Zhu, H., F. Qu, and L. H. Zhu. 1993. Isolation of genomic DNAs from plant, fungi and bacteria using benzyl chloride. Nucl. Acids Res. 21, 5279-5280   DOI   ScienceOn
8 Lee, F.W.F. and N.A. Da Silva. 1997. Improved efficiency and stability of multiple cloned gene insertions at the $\delta$ sequences of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 48, 339-345   DOI   ScienceOn
9 Steyn, A.J.C. and I,S. Pretorius. 1991. Co-expression of a Saccharomyces diastaticus glucoamylase-encoding gene and a Bacillus amyloliquefaciens $\alpha$-amylase-encoding gene in Saccharomyces cerevisiae. Gene 100, 85-93   DOI   PUBMED   ScienceOn
10 Dohmen, R.J., A.W.M. Strasser, U.M. Dahlems, and C.P. Hollenberg. 1990. Cloning of the Schwanniomyces occidentalis glucoamylase gene (GAM1) and its expression in Saccharomyces cerevisiae. Gene 95, 111-121   DOI   ScienceOn
11 Nieto, A., J.A. Prieto, and P. Sanz. 1999. Stable high-copy-number integration of Aspergillus oryzae $\alpha$-amylase cDNA in an industrial baker's yeast strain. Biotechnol. Prog. 15, 459-466   DOI   PUBMED   ScienceOn
12 Hill, J., K.A. Ian, G. Donald, and D.E. Griffiths. 1991. DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res. 19, 5791   DOI   ScienceOn
13 Wang, X., Z. Wang, and N.A. Da Silva. 1996. G418 selection and stability of cloned genes integrated at chromosomal $\delta$ sequences of Saccharomyces cerevisiae. Biotechnol. Bioeng. 49, 45-51   DOI   ScienceOn
14 Kim, K., C.S. Park, and J.R. Mattoon. 1988. High-efficiency, one-step utilization by transformed Saccharomyces cells which secrete both yeast glucoamylase and mouse $\alpha$-amylase. Appl. Environ. Microbiol. 54, 966-971   PUBMED
15 Ma, Y.J., L.L. Lin, H.R. Chien, and W.H. Hsu. 2000. Efficient utilization of starch by a recombinant strain of Saccharomyces cerevisiae producing glucoamylase and isoamylase. Biotechnol. Appl. Biochem. 31, 55-59   DOI   ScienceOn
16 Choi, E.Y., J.N. Park, H.O. Kim, D.J. Shin, Y.H. Chun, S.Y. Im, S.B. Chun, and S. Bai. 2002. Construction of an industrial polyploid strain of Saccharomyces cerevisiae containing Saprolegnia ferax $\beta$-amylase gene and secreting $\beta$-amylase. Biotechnol. Lett. 24, 1785-1790   DOI   ScienceOn
17 Innis, M.A., M.J. Holland, P.C. McCabe, G.E. Cole, V.P. Wattman, R. Tal, K.W.K. Watt, D.H. Gelfand, J.P. Holland, and J.H. Meade. 1985. Expression, glycosylation, and secretion of an Aspergillusglucoamylase by Saccharomyces cerevisiae. Science 228, 21-26   DOI   PUBMED   ScienceOn
18 Kang, H.A. and J.W.B. Hershey. 1994. Effect of initiation factor elF-5A depletion pn protein synthesis and proliferation of Saccharomyces cerevisiae. J. Biol. Chem. 269, 3934-3940
19 Lin, L.L., Y.J. Ma, H.R. Chien, and W.H. Hsu. 1998. Construction of an amylolytic yeast by multiple integration of the Aspergillus awamori glucoamylase gene into a Saccharomyces cerevisiae chromosome. Enzyme Microbiol. Technol. 23, 360-365   DOI   ScienceOn
20 Lee, F.W.F. and N.A. Da Silva. 1997. Sequential $\delta$-integration for the regulated insertion of cloned genes in Saccharomyces cerevisiae. Biotechnol. Prog. 13, 368-373   DOI   PUBMED   ScienceOn
21 Saito, S., Y. Mieno, T. Nagashima, C. Kumagai, and K. kitamoto. 1996. Breeding of a new type of baker's yeast by $\delta$-integration for overproduction of glucoamylase using a homothallic yeast. J. Ferment. Bioeng. 81, 978-103
22 Kang, N.Y., J.N. Park, J.E. Chin, H.B. Lee, S.Y. Im, and S. Bai. 2003. Construction of an amylolytic industrial strain of Saccharomyces cerevisiae containing the Schwanniomyces occidentalis $\alpha$-amylase gene. Biotechnol. Lett. 25, 1847-1851   DOI   ScienceOn
23 Marin, D., M. Jimenez, and L. Fernandez. 2001. Construction of an efficient amylolytic industrial yeast strain containing DNA exclusively from yeast. FEMS Microbiol. Lett. 201, 249-253   DOI   PUBMED
24 Xie, Q. and A. Jimenez. 1996. Molecular cloning of a novel allele of SMR1 which determines sulfometuron methyl resistance in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 137, 165-168   DOI   PUBMED
25  Cho, K.M., Y.J. Yoo, and H.S. Kang. 1999. $\delta$-Integration of endo/exo-glucanase and $\beta$-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme. Microbiol. Technol. 25, 22-30
26 Kim, M.D., Y.J. Yoo, S.K. Rhee, and J.H. Seo. 2001. Enhanced transformation efficiency of an anticoagulant hirudin gene into Saccharomyces cervisiae by a double $\delta$-sequence. J. Microbiol. Biothechnol. 11, 61-64