Browse > Article
http://dx.doi.org/10.14477/jhm.2013.26.1.033

A Historical Process Analysis and Extension of Division into Equal Parts in Middle School Geometry  

Suh, Bo Euk (Department of Mathematics, Catholic University of Daegu)
Publication Information
Journal for History of Mathematics / v.26, no.1, 2013 , pp. 33-56 More about this Journal
Abstract
This is a literature study about the concept of 'Division into Equal Parts' in middle school geometry. First, we notice that the concept of the division into equal parts in middle school geometry is given in four themes, which are those of line segments, angles, arches and areas. Second, we investigate and analyse the historical backgrounds of these four kinds of divisions into equal parts. Third, the possibility of extension in terms of method and concept was researched. Through the result of this study, we suggest that it is desirable to use effective utility of history in mathematical teaching and learning in middle school.
Keywords
middle school mathematics; division into equal parts; geometry; history of mathematics; historical developmental process;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 G. Polya, Mathematics and Plausible Reasoning, Vol. I, Princeton University Press, 1973.
2 V. V. Prasolov, Prablemi po Plannimetriya, Nauka, 1986.
3 Ptolemy (trans. Toomer, G. J.), Ptolemy's Almagest, Princeton Unversity Press, 1998.
4 A. H. Schoenfeld, Mathematical Problem Solving, Academic Press Inc., 1985
5 S. Skinner, Sacred geometry, Octopus Publishing Group, 2007.
6 D. E. Smith, History of Mathematics, Dover Press, 1958.
7 R. C. Yates, The trisection problem, NCTM, 1971.
8 김용운, 수학사대전, 경문사, 2010.
9 김진호, 김용대, 서보억, 3대 작도 문제 해결을 위한 곡선과 기구, 교우사, 2011.
10 박한식, 교직수학, 대한교과서주식회사, 1991.
11 서보억, 중학교 영재학생의 수학기초지식의 이해 정도에 대한 조사 연구, 한국학교수학회논문집 12(2009) No. 1, pp. 131-149.
12 유희찬 외, 중학교 1학년 수학, (주) 미래엔컬쳐그룹, 2009.
13 유희찬 외, 중학교 2학년 수학, (주) 미래엔컬쳐그룹, 2009.
14 유희찬 외, 중학교 3학년 수학, (주) 미래엔컬쳐그룹, 2009.
15 윤대원, 서보억, 김동근, 자료론에 대하여, 한국수학사학회지 21(2007) No. 2, pp. 55-70
16 이종우, 기하학의 역사적 배경과 발달, 경문사, 2002.
17 조성민, 역사발생적 관점에서 본 행렬 지도의 재음미, 한국학교수학회논문집 12(2009) No. 1, pp. 99-114.
18 최근배, 분할과 반복 조작을 통한 분수지도 탐구, 학교수학 12(2010) No. 3, pp. 411-424
19 한인기, 교사를 위한 수학사, 교우사, 2003.
20 한인기, 에르든에프, 유추를 통한 수학탐구, 승산, 2005.
21 한인기, 유추를 이용한 삼각형의 각의 이등분선 성질 탐구 수학교육 41(2002) No. 2, pp. 215-225.
22 R. C. Archibald, Euclid's book on divisions of figures, Cambridge University Press, 1915.
23 C. B. Boyer & U. C. Merzbach, A History of Mathematics, John Wiley & Sons, Inc., 1991.
24 Van der Waerden. B. L., (English translation by A. Dresden), Science Awakening, Science Editions, New York, 1963.
25 Euclid, Euclid's Elements: All thirteen books complete in one volume, Green Lion Press, 2003.
26 H. Eves, An Introduction to the History of Mathematics, Harcourt Brace, 1962.
27 H. Eves, Great moments in mathematics(Before 1650), The Dolciani Mathematical Expositions 5, MAA, 1983.
28 T. L. Heath, The Thriteen Books Of Euclid's Elements, London, Cambridge University Press, 1952.
29 T. L. Heath, A history of Greek mathematics (Vol. 1), Adamant Media Corporation, 2008.
30 T. L. Heath, A history of Greek mathematics (Vol. 2), Adamant Media Corporation, 2008.
31 T. L. Heath, Aristarchus of Samos: The Ancient Copernicus, Dover Press, 1981.
32 J. Klein, Greek mathematical thought and the origin of algebra, Dover Publications, Inc., 1968.
33 M. Kline, Mathematical thought from ancient to modern times: Volume1, Oxford University Press, 1972.
34 L. L. Jackson, The educational significance of sixteenth century arithmetic, Columbia University, 1906.
35 L. N. H. Bunt, P. S. Jones & J. D. Bedient, The Historical Roots of Elementary Mathematics, Dover Publications, Inc., New York, 1988, ISBN: 0-486-25563-8.
36 R. E. Mayer & M. Hegarty, The Process of Understanding Mathematical Problems, In The Nature of Mathematical Thinking(Sternberg, R. J. and Ben-Zeev, T., editors), Lawrence Erlbaum Associates, 1996.