Browse > Article

Spreading Pattern of Evergreen Broad-leaved Trees in Forest Community adjacent to the Camellia japonica Stands  

Chung, Jae-Min (Dept. of Plant Conservation, Korea National Arboretum)
Jung, Hyu-Ran (Dept. of Plant Conservation, Korea National Arboretum)
Moon, Hyun-Shik (Dept. of For. Environ. Res., Gyeongsang National Univ.(Insti. of Agric. & Life Sci.))
Publication Information
Journal of agriculture & life science / v.45, no.6, 2011 , pp. 89-94 More about this Journal
Abstract
In this study, the amount of seedlings and seed dispersal of evergreen broad-leaved trees in forest community adjacent to Camellia japonica forest were studied to provide basic information for effective management of evergreen broad-leaved forest. Evergreen broad-leaved trees including C. japonica, Neolitsea sericea, Machilus thunbergii, Ligustrum japonicum, Cinnamomum japonicum, Litsea japonica, Pittosporum tobira showed high density and ratio of seedlings in community adjacent to C. japonica forest. Although individual densities of N. sericea, M. thunbergii, L. japonicum were low, their seedlings were distributed up to Pinus thunbergii and coniferous broad-leaved forest at a distance of 100m and 200m from C. japonica forest. Distribution of DBH class of C. japonica suggested a continuous spread from higher frequency of young individuals, N. sericea, M. thunbergii and L. japonicum did not showed an obvious trend. Seed of C. japonica mainly dispersed within 50m from mother tree.
Keywords
Seed dispersal; Seedling density; Distributional spread; Evergreen broadleaved forest;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Chung, J. M., H. R. Jung, J. T. Kang, and H. S. Moon. 2010. Vegetation structure and soil characteristics around Camellia japonica stand in Hakdong, Geoje island. J. Agric. Life Sci. 44: 31-40.
2 Chung, J. M., H. R. Jung, J. T. Kang, M. G. Cho, C. H. Kim, and H. S. Moon. 2010. Ecological characteristics of forest community by distance from Camellia japonica stand. J. Agric. Life Sci. 44: 27-37.
3 Harcombe, P. A. and P. H. Marks. 1978. Tree diameter distribution and replacement precesses in southern Texas forests. For. Sci. 24: 153-166.
4 Herrera, J. M. and D. Garcia. 2009. Effects of forest fragmentation on seed dispersal and seedling establishment in Ornithochorous trees. Cons. Biol. 24: 1089-1098.
5 Lee, J. H. and B. H. Choi. 2010. Distribution and northernmost limit on the Korean peninsula of three evergreen trees. Korean J. Pl. Taxon. 40: 267-273.
6 Nathan, R. and H. C. Muller-Landau. 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecol. Evol. 15: 278-285.   DOI   ScienceOn
7 Noma, N. and T. Yumoto. 1997. Fruiting phenology of animal-dispersed plants in response to winter migration of frugivores in a warm temperate forest on Yakushima Island, Japan. Ecol. Res. 12: 119-129.   DOI   ScienceOn
8 Oh, K. K., Y. S. Kim, J. G. Oh, and Y. B. Ki. 2008. Dynamics of forest community structure at the valley of Piagol and Daeseonggol in the Jirisan national park(I). Kor. J. Env. Eco. 22: 514-520.
9 Oh, K. K. and H. Y. Shim. 2006. Distribution and population structure of evergreen broad-leaved forest in the Weolchulsan national park. Kor. J. Env. Eco. 20: 81-93.
10 Ohashi, H., Y. Sasaki, and K. Ohashi. 2006a. The northernmost limit of distribution of Quercus acuta Thunb. (Fagaceae). J. Jpn. Bot. 81: 173-187.
11 Ohashi, H., Y. Sasaki, and K. Ohashi. 2006b. The northernmost limit of distribution of Neolitsea sericea (Blume) Koidz. (Lauraceae) on the pacific side of Japan. J. Jpn. Bot. 81: 248-249.
12 Ohwi, J. and M. Kitagawa. 1983. New flora of Japan. Shibundo Co., Ltd. Publishers. Tokyo. 1716p.
13 Paggi, G. M., J. A. T. Sampaio, M. Bruxel, C. M. Zanella, M. Goetze, M. V. Buttow, C. Palma-Silva, and F. Bered. 2010. Seed dispersal and population structure in Vriesea gigantea, a bromeliad from the Brazilian atlantic rainforest. Bot. J. Linn. Soc. 164: 317-325.   DOI   ScienceOn
14 Song, H. K., M. J. Lee, S. Lee, H. J. Kim, Y. U. Ji, and O. W. Kwon. 2003. Vegetation structures and ecological niche of Quercus mongolica forests. Jour. Korean For. Soc. 92: 409-420.
15 Tackenberg, O., P. Poschlod, and S. Bonn. 2003. Assessment of wind dispersal potential in plant species. Ecol. Monogra. 73: 191-205.   DOI   ScienceOn
16 Thomson, F. J., A. T. Molea, T. D. Auld, and R. T. Kingsford. 2011. Seed dispersal distance is more strongly correlated with plant height than with seed mass. J. Ecol. 99: 1299-1307.   DOI   ScienceOn
17 Thompson, K. and D. Rabinowitz. 1989. Do big plants have big seeds? Am. Nat. 133: 722-728.   DOI   ScienceOn
18 Travis, J. M. J., H. S. Smith, and S. M. W. Ranwala. 2010. Towards a mechanistic understanding of dispersal evolution in plants. conservation implications. Divers. Distrib. 16: 690-702.   DOI   ScienceOn
19 Venable, D. L. and J. S. Brown. 1988. The selective interactions of dispersal, dormancy and seed size as adaptations for reducing risk in variable environments. The Am. Natural. 131: 360-384.   DOI   ScienceOn
20 Wang, B. C. and T. B. Smith. 2002. Closing the seed dispersal loop. Trends in Ecol. Evol. 17: 379-385.   DOI   ScienceOn
21 Wilson, M. F., B. Rice, and M. Westoby. 1990. Seed dispersal spectra: comparison of temperate plant communities. J. Vegetation Sci. 1: 547-562.   DOI   ScienceOn
22 Zotz, G., P. Permejo, and H. Dietz. 1999. The epiphyte vegetation of Annona glabra on Barro Colorado island, Panama. J. Biogeo. 24: 761-776.
23 Yun, J. H., J. H. Kim, K. H. Oh, and B. Y. Lee. 2011. Distributional change and climate condition of warm-temperate evergreen broad-leaved trees in Korea. Kor. J. Env. Eco. 25: 47-56.