Browse > Article
http://dx.doi.org/10.12989/cac.2021.28.1.093

Enhancing the performance of hyposludge concrete beams using basalt fiber and latex under cyclic loading  

Srividhya, S. (Department of Civil Engineering, College of Engineering Guindy, Anna University)
Vidjeapriya, R. (Department of Civil Engineering, College of Engineering Guindy, Anna University)
Neelamegam, M. (Department of Civil Engineering, Easwari Engineering College)
Publication Information
Computers and Concrete / v.28, no.1, 2021 , pp. 93-105 More about this Journal
Abstract
An attempt has been made to study the influence of basalt fiber and latex on the behaviour of hypo sludge based concrete beams under cyclic loading. Two sets of four geometrically similar specimens were cast to study the deflection behaviour of beams. The analysis and study of parameters such as ultimate load carrying capacity, crack pattern, energy dissipation, stiffness degradation and ductility were conducted in this investigation. A preliminary investigation showed that the durability properties decreased when hypo sludge was added to concrete. To enhance the durability, SBR latex was added to one set of four specimens. Results indicate that the addition of basalt fibers and latex to the hypo sludge based concrete beams showed significant improvement in ultimate load carrying capacity, stiffness, energy dissipation and ductility compared to the control concrete beams. The specimen (LHSBFC) with 10% hypo sludge, 0.25% Basalt fiber and 10% SBR latex showed an increase of 1.82% load carrying capacity, 2.65% stiffness, 21.84% ductility, 16% energy dissipation when compared to the control concrete beam.
Keywords
basalt fiber; crack pattern; ductility; hyposludge; latex; stiffness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Murugesan, T., Vidjeapriya, R. and Bahurudeen, A. (2020), "Sustainable use of sugarcane bagasse ash and marble slurry dust in crusher sand based concrete", Struct. Concrete, 22(S1), 183-192. https://doi.org/10.1002/suco.202000215.   DOI
2 Kirthika, S.K. and Singh, S.K. (2018), "Experimental investigations on basalt fiber-reinforced concrete", J. Inst. Eng. Ser. A, 99(4), 661-670. https://doi.org/10.1007/s40030-018-0325-4.   DOI
3 Kizilkanat, A.B., Kabay, N., Akyuncu, V., Chowdhury, S. and Akca, A.H. (2015), "Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study", Constr. Build. Mater., 100, 218-224. https://doi.org/10.1016/j.conbuildmat.2015.10.006.   DOI
4 Mills, R.H. (1981), "Preferential precipitation of calcium hydroxide on alkali-resistant glass fibers", Cement Concrete Res., 11(5), 689-697. https://doi.org/10.1016/0008-8846(81)90027-2.   DOI
5 Mohammed, B.S. and Fang, O.C. (2011), "Mechanical and durability properties of concretes containing paper-mill residuals and fly ash", Constr. Build. Mater., 25(2), 717-725. https://doi.org/10.1016/j.conbuildmat.2010.07.015.   DOI
6 Mosaberpanah, M.A., Amran, Y.H. and Akoush, A. (2020), "Performance investigation of palm kernel shell ash in high strength concrete production", Comput. Concrete, 26(6), 577-585. https://doi.org/10.12989/cac.2020.26.6.577.   DOI
7 Khan, M. and Ali, M. (2019), "Improvement in concrete behavior with fly ash, silica-fume and coconut fibers", Constr. Build. Mater, 203, 174-187. https://doi.org/10.1016/j.conbuildmat.2019.01.103.   DOI
8 Goel, G. and Kalamdhad, A.S. (2017), "An investigation on use of paper mill sludge in brick manufacturing", Constr. Build. Mater, 148, 334-343. https://doi.org/10.1016/j.conbuildmat.2017.05.087.   DOI
9 Ramli, M., Tabassi, A.A. and Hoe, K.W. (2013), "Porosity, pore structure and water absorption of polymer-modified mortars: An experimental study under different curing conditions", Compos. Part B: Eng., 55, 221-233. http://doi.org/10.1016/j.compositesb.2013.06.022.   DOI
10 Murugesan, T., Vidjeapriya, R. and Bahurudeen, A. (2020), "Sugarcane bagasse ash-blended concrete for effective resource utilization between sugar and construction industries", Sugar Tech., 858-869. https://doi.org/10.1007/s12355-020-00794-2.   DOI
11 Lenka, S. and Panda, K.C. (2017), "Effect of metakaolin on the properties of conventional and self compacting concrete", Adv. Concrete Constr., 5(1), 31-48. http://doi.org/10.12989/acc.2017.5.1.031.   DOI
12 Tamanna, K., Raman, S.N., Jamil, M. and Hamid, R. (2020), "Utilization of wood waste ash in construction technology: A review", Constr. Build. Mater., 237, 117654. https://doi.org/10.1016/j.conbuildmat.2019.117654.   DOI
13 Tawfik, A.S., Badr, M.R. and Elzanaty, A. (2014), "Behavior and ductility of high strength reinforced concrete frames", HBRC J., 10(2), 215-221. https://doi.org/10.1016/j.hbrcj.2013.11.005.   DOI
14 Shankar, G.R. and Suji, D. (2014), "Seismic behaviour of exterior reinforced concrete beam-column joints in high performance concrete using metakaolin and partial replacement with quarry dust", International Scholarly Research Notices. http://doi.org/10.1155/2014/361962.   DOI
15 Ahmad, S., Malik, M.I., Wani, M.B. and Ahmad, R. (2013), "Study of concrete involving use of waste paper sludge ash as partial replacement of cement", IOSR J. Eng., 3(11), 6-15.
16 Ali, B., Raza, S.S., Hussain, I. and Iqbal, M. (2021), "Influence of different fibers on mechanical and durability performance of concrete with silica fume", Struct. Concrete, 22(1), 318-333. https://doi.org/10.1002/suco.201900422.   DOI
17 Dadmand, B., Pourbaba, M., Sadaghian, H. and Mirmiran, A. (2020), "Experimental & numerical investigation of mechanical properties in steel fiber-reinforced UHPC", Comput. Concrete, 26(5), 451-465. https://doi.org/10.12989/cac.2020.26.5.451.   DOI
18 Dogan, M. and Bideci, A. (2016), "Effect of Styrene Butadiene Copolymer (SBR) admixture on high strength concrete", Constr. Build. Mater., 112, 378-385. http://doi.org/10.1016/j.conbuildmat.2016.02.204.   DOI
19 Divyah, N., Thenmozhi, R., Neelamegam, M. and Prakash, R. (2021), "Characterization and behavior of basalt fiber-reinforced lightweight concrete", Struct Concrete, 22(1), 422-430. http://doi.org/10.1002/suco.201900390.   DOI
20 Ganesan, N. and Indira, P.V. (2000), "Latex modified SFRC beam-column joints subjected to cyclic loading", Ind. Concrete. J., 74(7), 416-420.
21 Truong, G.T., Son, M.K. and Choi, K.K. (2019), "Mechanical performance and durability of latex-modified fiber-reinforced concrete", J. Adv. Concrete Technol., 17(2), 79-92. https://doi.org/10.3151/jact.17.79.   DOI
22 Wong, H.S., Barakat, R., Alhilali, A., Saleh, M. and Cheeseman, C.R. (2015), "Hydrophobic concrete using waste paper sludge ash", Cement Concrete Res., 70, 9-20. https://doi.org/10.1016/j.cemconres.2015.01.005.   DOI
23 Xiaochun, Q., Xiaoming, L. and Xiaopei, C. (2017), "The applicability of alkaline-resistant glass fiber in cement mortar of road pavement: Corrosion mechanism and performance analysis", Int. J. Pavement Res. Technol., 10(6), 536-544. https://doi.org/10.1016/j.ijprt.2017.06.003.   DOI
24 Ghamari, A., Kurdi, J., Shemirani, A.B. and Haeri, H. (2020), "Experimental investigating the properties of fiber reinforced concrete by combining different fibers", Comput. Concrete, 25(6), 509-516. https://doi.org/10.12989/cac.2020.25.6.509.   DOI
25 Alnahhal, W. and Aljidda, O. (2018), "Flexural behavior of basalt fiber reinforced concrete beams with recycled concrete coarse aggregates", Constr. Build. Mater., 169, 165-178. https://doi.org/10.1016/j.conbuildmat.2018.02.135.   DOI
26 Amran, M., Murali, G., Fediuk, R., Vatin, N., Vasilev, Y. and Abdelgader, H. (2021), "Palm oil fuel ash-based eco-efficient concrete: A critical review of the short-term properties", Mater., 14(2), 332. https://doi.org/10.3390/ma14020332.   DOI
27 Ansari, M. and Safiey, A. (2021), "Interaction of magnetic water and polypropylene fiber on fresh and hardened properties of concrete", Steel Compos. Struct., 39(3), 307-318. https://doi.org/10.12989/scs.2021.39.3.307.   DOI
28 ASTM C1585-13, Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes.
29 Bhat, T., Chevali, V., Liu, X., Feih, S. and Mouritz, A.P. (2015), "Fire structural resistance of basalt fiber composite", Compos. Part A: Appl. Sci. Manuf., 71, 107-115. https://doi.org/10.1016/j.compositesa.2015.01.006.   DOI
30 Bai, J., Chaipanich, A., Kinuthia, J.M., O'farrell, M., Sabir, B.B., Wild, S. and Lewis, M.H. (2003), "Compressive strength and hydration of waste paper sludge ash-ground granulated blast furnace slag blended pastes", Cement Concrete Res., 33(8), 1189-1202. https://doi.org/10.1016/S0008-8846(03)00042-5.   DOI
31 Bhikshma, V., Jagannadha, R.K. and Balaji, B. (2010), "An experimental study on behavior of polymer cement concrete", Asian J. Civil Eng. (Build. Hous.), 11(5), 563-573.
32 Gomes, L.D.D.S., Oliveira, D.R.C.D., MoraesNeto, B.N.D., Medeiros, A.B.D. and Macedo, A.N. (2018), "Experimental analysis of the efficiency of steel fibers on shear strength of beams", Lat. Am. J. Solid. Struct., 15(7). https://doi.org/10.1590/1679-78254710.   DOI
33 High, C., Seliem, H.M., El-Safty, A. and Rizkalla, S.H. (2015), "Use of basalt fibers for concrete structures", Constr. Build. Mater., 96, 37-46. https://doi.org/10.1016/j.conbuildmat.2015.07.138.   DOI
34 Jalasutram, S., Sahoo, D.R. and Matsagar, V. (2017), "Experimental investigation of the mechanical properties of basalt fiber-reinforced concrete", Struct Concrete, 18(2), 292-302. https://doi.org/10.1002/suco.201500216.   DOI
35 Katkhuda, H. and Shatarat, N. (2017), "Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment", Constr. Build. Mater., 140, 328-335. https://doi.org/10.1016/j.conbuildmat.2017.02.128.   DOI
36 Kayali, O. (2004), "Effect of high volume fly ash on mechanical properties of fiber reinforced concrete", Struct Constr., 37(5), 318-327. https://doi.org/10.1617/13978.   DOI
37 Azizinamini, A., Pavel, R., Hatfield, E. and Ghosh, S.K. (1999), "Behavior of lap-spliced reinforcing bars embedded in high-strength concrete", ACI Struct J., 96, 826-835. https://doi.org/10.14359/737.   DOI
38 Buratti, N., Ferracuti, B. and Savoia, M. (2013), "Concrete crack reduction in tunnel linings by steel fiber-reinforced concretes", Constr. Build. Mater., 44, 249-259. https://doi.org/10.1016/j.conbuildmat.2013.02.063.   DOI
39 Qureshi, L.A., Ali, B. and Ali, A. (2020), "Combined effects of supplementary cementitious materials (silica fume, GGBS, fly ash and rice husk ash) and steel fiber on the hardened properties of recycled aggregate concrete", Constr. Build. Mater., 263, 120636. https://doi.org/10.1016/j.conbuildmat.2020.120636.   DOI
40 IS 516 (1959) (Reaffirmed 2004), Methods of Tests for Strength of Concrete. Amendment No. 2, Reprint 1993, Bureau of Indian Standards, New Delhi, India.
41 Ridzuan, A.R.M., Fauzi, M.A., Ghazali, E., Arshad, M.F. and Fauzi, M.A.M. (2011), "Strength assessment of controlled low strength materials (CLSM) utilizing recycled concrete aggregate and waste paper sludge ash", IEEE Colloquium on Humanities, Science and Engineering, 208-211.
42 Divyah, N., Thenmozhi, R. and Neelamegam, M. (2020), "Experimental and numerical analysis of battened builtup lightweight concrete encased composite columns subjected to axial cyclic loading", Lat. Am. J. Solid. Struct., 17(3). http://dx.doi.org/10.1590/1679-78255745.   DOI
43 Schneider, M. (2019), "The cement industry on the way to a low-carbon future", Cement Concrete Res., 124, 105792.   DOI
44 Wang, W. and Chouw, N. (2017), "The behaviour of coconut fiber reinforced concrete (CFRC) under impact loading", Constr. Build. Mater., 134, 452-461. https://doi.org/10.1016/j.conbuildmat.2016.12.092.   DOI
45 Siddiqi, Z.A., Hameed, R., Saleem, M., Khan, Q.S. and Qazi, J.A. (2013), "Determination of compressive strength and water absorption of styrene butadiene rubber (SBR) latex modified concrete", Pak. J. Sci., 65(1), 124.
46 Sukontasukkul, P., Pomchiengpin, W. and Songpiriyakij, S. (2010), "Post-crack (or post-peak) flexural response and toughness of fiber reinforced concrete after exposure to high temperature", Constr. Build. Mater., 24(10), 1967-1974. https://doi.org/10.1016/j.conbuildmat.2010.04.003.   DOI
47 Tassew, S.T. and Lubell, A.S. (2014), "Mechanical properties of glass fiber reinforced ceramic concrete", Constr. Build. Mater., 51, 215-224. https://doi.org/10.1016/j.conbuildmat.2013.10.046.   DOI
48 Rossignolo, J.A. (2009), "Interfacial interactions in concretes with silica fume and SBR latex", Constr. Build. Mater., 23(2), 817-821. https://doi.org/10.1016/j.conbuildmat.2008.03.005.   DOI
49 Sakai, E. and Sugita, J. (1995), "Composite mechanism of polymer modified cement", Cement Concrete Res., 25(1), 127-135. https://doi.org/10.1016/0008-8846(94)00120-N.   DOI
50 Sharipudin, S.S. and Ridzuan, A.R.M. (2013), "Influence of waste paper sludge ash (WPSA) and fine recycled concrete aggregate (FRCA) on the compressive strength characteristic of foamed concrete", Adv. Mater. Res., 626, 376-380. https://doi.org/10.4028/www.scientific.net/AMR.626.376.   DOI
51 Singh, L.P., Ali, D., Tyagi, I., Sharma, U., Singh, R. and Hou, P. (2019), "Durability studies of nano-engineered fly ash concrete", Constr. Build. Mater., 194, 205-215. https://doi.org/10.1016/j.conbuildmat.2018.11.022.   DOI
52 Singh, N.B. and Middendorf, B. (2020), "Geopolymers as an alternative to Portland cement: An overview", Constr. Build. Mater., 237, 117455. https://doi.org/10.1016/j.conbuildmat.2019.117455.   DOI
53 Sultana, N., Hossain, S.Z., Alam, M.S., Hashish, M.M.A. and Islam, M.S. (2020), "An experimental investigation and modeling approach of response surface methodology coupled with crow search algorithm for optimizing the properties of jute fiber reinforced concrete", Constr. Build. Mater., 243, 118216. https://doi.org/10.1016/j.conbuildmat.2020.118216.   DOI
54 Mohammadyan-Yasouj, S.E. and Ghaderi, A. (2020), "Experimental investigation of waste glass powder, basalt fiber, and carbon nanotube on the mechanical properties of concrete", Constr. Build. Mater., 252, 119115. https://doi.org/10.1016/j.conbuildmat.2020.119115.   DOI
55 Muduli, R. and Mukharjee, B.B. (2019), "Effect of incorporation of metakaolin and recycled coarse aggregate on properties of concrete", J. Clean. Prod., 209, 398-414. https://doi.org/10.1016/j.jclepro.2018.10.221.   DOI
56 Pillay, D.L., Olalusi, O.B. and Mostafa, M.M. (2020), "A review of the engineering properties of concrete with paper mill waste ash towards sustainable rigid pavement construction", Silicon, 1-17. https://doi.org/10.1007/s12633-020-00664-2.   DOI
57 Ansari, M. and Safiey, A. (2020), "Corrosion effects on mechanical behavior of steel fiber reinforced concrete, including fibers from recycled tires", Comput. Concrete, 26(4), 367-375. https://doi.org/10.12989/cac.2020.26.4.367.   DOI
58 Larsen, I.L. and Thorstensen, R.T. (2020), "The influence of steel fibers on compressive and tensile strength of ultra high performance concrete, A review", Constr. Build. Mater., 256, 119459. https://doi.org/10.1016/j.conbuildmat.2020.119459.   DOI
59 Zhou, M., Fang, D. and Jiang, D. (2016), "Research on the fracture properties and modification mechanism of polyester fiber and SBR latex modified cement concrete", Adv. Mater. Sci. Eng., 2016, Article ID 5163702. https://doi.org/10.1155/2016/5163702.   DOI
60 Ali, M. and Chouw, N. (2013), "Experimental investigations on coconut-fiber rope tensile strength and pullout from coconut fiber reinforced concrete", Constr. Build. Mater., 41, 681-690. https://doi.org/10.1016/j.conbuildmat.2012.12.052.   DOI
61 Ayub, T., Shafiq, N. and Nuruddin, M.F. (2014), "Mechanical properties of high-performance concrete reinforced with basalt fibers", Procedia Eng., 77, 131-139. https://doi.org/10.1016/j.proeng.2014.07.029.   DOI
62 Beglarigale, A. and Yazici, H. (2015), "Pull-out behavior of steel fiber embedded in flowable RPC and ordinary mortar", Constr. Build. Mater., 75, 255-265. https://doi.org/10.1016/j.conbuildmat.2014.11.037.   DOI
63 Branston, J., Das, S., Kenno, S.Y. and Taylor, C. (2016), "Influence of basalt fibers on free and restrained plastic shrinkage", Cement Concrete Compos., 74, 182-190. https://doi.org/10.1016/j.cemconcomp.2016.10.004.   DOI
64 Fava, G., Ruello, M. L. and Corinaldesi, V. (2011), "Paper mill sludge ash as supplementary cementitious material", J. Mater. Civil Eng., 23(6), 772-776. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000218.   DOI
65 IS 383 (2016), Specification for Coarse and Fine Aggregate from Natural Sources for Concrete, Bureau of Indian Standards, New Delhi, India.
66 Jittin, V., Minnu, S.N. and Bahurudeen, A. (2020), "Potential of sugarcane bagasse ash as supplementary cementitious material and comparison with currently used rice husk ash", Constr. Build. Mater, 273. https://doi.org/10.1016/j.conbuildmat.2020.121679.   DOI