Browse > Article
http://dx.doi.org/10.12989/cac.2021.28.1.025

Relationship between point load index and mode II fracture toughness of granite  

Sarfarazi, V. (Department of Mining Engineering, Hamedan University of Technology)
Asgari, Kaveh (Department of Mining Engineering, Shahid Bahonar University of Kerman)
Naderi, A.A. (Hamedan University of Technology)
Publication Information
Computers and Concrete / v.28, no.1, 2021 , pp. 25-37 More about this Journal
Abstract
Experimental and numerical methods were used to investigate the relationship between point load index and mode II fracture toughness of granite. A punch-through shear test was used to measure the mode II fracure toughness of granite. Point load test was performed to measured the point load index of jointed granite. Three granite samples with dimension of 20 mm×150 mm×40 mm consisting parallel non-persisent joint were prepared in the laboratory for punch test. Also six recangular specimen with echelon joint was prepared for point load test. Cuncurrent with experimental tests, numerical simulations have been done for punch test by PFC2D and poin load test by PFC3D. Numerical model for punch test has dimension of 100 mm×120 mm. similar to those for joints configuration systems in the experimental test, three models with different rock bridge lengths were prepared. Also, numerical model for point load test has dimension of 100 mm×100 mm×40 mm. six models consisting non-persistent joint were prepared. The punch testing results showed that the failure process was mostly governed by the rock bridge lengh. The shear strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. It was shown that the shear behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the rock bridge length. The strength of samples decreases by increasing the joint length. The point load testing results showed that the tensile cracks initiate beneath the loading cone and propagates through the intact rock till coalescence with notch tips. The value of point load index has close relationship with mode II fracture toughness obtained by punch test. The failure pattern and failure load are similar in both methods i.e., the experimental testing and the numerical simulation methods.
Keywords
PFC2D & PFC3D; point load test; punch-through shear test; rock bridge;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kahraman, S. and Gunaydin, O. (2009), "The effect of rock classes on the relation between uniaxial compressive strength and point load index", Bull. Eng. Geol. Environ., 68(3), 345-353. https://doi.org/10.1007/s10064-009-0195-0.   DOI
2 Meredith, P.G. and Atkinson, B.K. (1985), "Fracture toughness and subcritical crack growth during high-temperature tensile deformation of Westerly granite and Black gabbro", Phys. Earth. Planet Inter., 39, 33-51. https://doi.org/10.1016/0031-9201(85)90113-X.   DOI
3 Ouchterlony, F. (1988), "Suggested methods for determining the fracture toughness of rock", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 25, 71-96. https://doi.org/10.1016/0148-9062(88)91871-2.   DOI
4 Kahraman, S., Gunaydin, O. and Fener, M. (2005), "The effect of porosity on the relation between uniaxial compressive strength and point load index", J. Rock. Mech. Min. Sci., 42(4), 584-589. https://doi.org/10.1016/j.ijrmms.2005.02.004.   DOI
5 Kallimogiannis, V. and Saroglou H. (2017), "Study of cracking process in granite", Procedia Eng., 191, 1108-1116.   DOI
6 Kayabal, K. and Selcuk, L. (2010), "Nail penetration test for determining the uniaxial compressive strength of rock", J. Rock. Mech. Min. Sci., 47(2), 265-271. https://doi.org/10.1016/j.ijrmms.2009.09.010.   DOI
7 Kemeny, J., Ko, T.Y. and Jeon, S. (2014), "Fracture characteristics of rocks under shear loading", Tunn. Undergr. Sp. Constr. Sustain. Dev., 18, 760-764. https://doi.org/10.1007/s12205-014-0330-8.   DOI
8 Kequan, Y.U. and Zhoudao, L.U. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normal-strength concrete", Comput. Concrete, 15(2), 23-34. https://doi.org/10.12989/cac.2015.15.2.199.   DOI
9 Lee, S., Lee, S.H. and Chang, Y.S. (2015), "Evaluation of RPV according to alternative fracture toughness requirements", Struct. Eng. Mech., 53(6), 1271-1286. http://doi.org/10.12989/sem.2015.53.6.1271.   DOI
10 Li, D. and Wong, L.N.Y. (2013), "Point load test on meta-sedimentary rocks and correlation to UCS and BTS", Rock Mech. Rock Eng., 46(4), 889-896. https://doi.org/10.1007/s00603-012-0299-x.   DOI
11 Ma, G.W. and Wu, W. (2010), "Water saturation effects on sedimentary rocks", Civil Eng. Res., 23, 129-131.
12 Yurdakul, O., Tunaboyu, O., Routil, L. and Avsar, O. (2019), "Stochastic based nonlinear numerical modelling of structurally repaired shear critical beam", J. Compos. Constr., 23(5), 04019042. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000966.   DOI
13 Chen, F., Cao, P., Rao, Q.H., Ma, C.D. and Sun, Z.Q. (2005), "A mode II fracture analysis of double edge cracked Brazilian disk using the weight function method", Int. J. Rock Mech. Min. Sci., 42, 461-465. https://doi.org/10.1016/j.ijrmms.2004.11.008.   DOI
14 Davies, J., Yim, C.W.A. and Morgan, T.G. (1987), "Determination of fracture parameters of a punch-through shear specimen", Int. J. Cement Compos. Lightw. Concrete, 9(1), 33-41. https://doi.org/10.1016/0262-5075(87)90035-2.   DOI
15 Fener, M., Kahraman, S., Bilgil, A. and Gunaydin, O. (2005), "A comparative evaluation of indirect methods to estimate the compressive strength of rocks", Rock Mech. Rock Eng., 38(4), 329-343. https://doi.org/10.1007/s00603-005-0061-8.   DOI
16 Fowell, R.J. (1995), "Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimen", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 32, 57-64.   DOI
17 Franklin, J.A. (ISRM) (1985), "Suggested method for determining point load strength: ISRM common testing methods", Rock Mech. Min. Sci. Geomech. Abstr., 22(2), 51-60. https://doi.org/10.1016/0148-9062(85)92327-7.   DOI
18 Funatsu, T., Kuruppu, M. and Matsui, K. (2014), "Effects of temperature and confining pressure on mixed-mode (I-II) and mode II fracture toughness of Kimachi sandstone", Int. J. Rock Mech. Min. Sci., 67, 1-8. https://doi.org/10.1016/j.ijrmms.2013.12.009.   DOI
19 Griffith, A.A. (1921), "The phenomena of rupture and flow in solids", Philos. Tran. R. Soc. London Ser. A, Contain. Pap. Math. Phys. Character., 221, 163-198. https://doi.org/10.1098/rsta.1921.0006.   DOI
20 Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 7297-7308. https://doi.org/10.1007/s12517-014-1741-z.   DOI
21 Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression", Comput. Concrete, 11(2), 55-65. https://doi.org/10.12989/cac.2013.11.2.149.
22 Kuruppu, M.D., Obara, Y., Ayatollahi, M.R., Chong, K.P. and Funatsu, T. (2014), "ISRM-suggested method for determining the mode i static fracture toughness using semi-circular bend specimen", Rock Mech. Rock Eng., 47, 267-274. https://doi.org/10.1007/s00603-013-0422-7.   DOI
23 Haeri, H., Marji, M.F. and Shahriar, K. (2015c), "Simulating the effect of disc erosion in TBM disc cutters by a semi-infinite DDM", Arab. J. Geosci., 8(6), 3915-3927. https://doi.org/10.1007/s12517-014-1489-5.   DOI
24 Aliha, M.R.M. and Ayatollahi, M.R. (2011), "Mixed mode I/II brittle fracture evaluation of marble using SCB specimen", Procedia Eng., 10, 311-318. https://doi.org/10.1016/j.proeng.2011.04.054.   DOI
25 Atkinson, B.K. (1977), "Technical note fracture toughness of Tennessee sandstone and Carrara Marble using the double torsion testing method", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 16, 49-53. https://doi.org/10.1016/0148-9062(79)90774-5.   DOI
26 Backers, T. (2004), "Fracture toughness determination and micromechanics of rock under mode I and mode II loading", University of Potsdam, Germany.
27 American Society for Testing and Materials (ASTM) (2008), Standard Test Method for Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classifications, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
28 Zhou, Y.X., Xia, K., Li, X.B., Li, H.B., Ma, G.W., Zhao, J., Zhou, Z.L. and Dai, F. (2012), "Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials", J. Rock. Mech. Min. Sci., 49, 105-112. https://doi.org/10.1007/978-3-319-07713-0_3.   DOI
29 Mosabepranah, M.A. and Eren, O. (2016), "Statistical flexural toughness modeling of ultra high performance concrete using response surface method", Comput. Concrete, 17(4), 33-39. http://doi.org/10.12989/cac.2016.17.4.477.   DOI
30 Moon, T., Nakagawa, M. and Berger, J. (2007), "Measurement of fracture toughness using the distinct element method", Int. J. Rock Mech. Min. Sci., 44, 449-456. http://doi.org/10.1016/j.ijrmms.2006.07.015.   DOI
31 Nasseri, M.H.B., Mohanty, B. and Young, R.P. (2006), "Fracture toughness measurements and acoustic emission activity in brittle rocks", Pure Appl. Geophys., 163, 917-945. https://doi.org/10.1007/s00024-006-0064-8.   DOI
32 Park, N. (2006), "Discrete element modeling of rock fracture behavior: fracture toughness and time-dependent fracture growth", The University of Texas at Austin.
33 Rajabi, M., Soltani, N. and Eshraghi, I. (2016), "Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials", Struct. Eng. Mech., 58(2), 144-156. http://doi.org/10.12989/sem.2016.58.2.217.   DOI
34 Sarfarazi, V. (2014), "Numerical simulation of the process of fracture of Echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3.   DOI
35 Sarfarazi, V. (2016b), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. http://doi.org/10.12989/acc.2015.3.4.269.   DOI
36 Ayatollahi, M.R. and Akbardoost, J. (2013), "Size and geometry effects on rock fracture toughness: mode i fracture", Rock Mech. Rock Eng., 8, 1-11. https://doi.org/10.1007/s00603-013-0430-7.   DOI
37 Ayatollahi, M.R. and Akbardoost, J. (2013), "Size effects in mode II brittle fracture of rocks", Eng. Fract. Mech., 112, 165-180. https://doi.org/10.1016/j.engfracmech.2013.10.011.   DOI
38 Sarfarazi, V. (2017), "Direct and indirect methods for determination of mode I fracture toughness using PFC2D", Comput. Concrete, 20(1), 79-89. https://doi.org/10.12989/cac.2017.20.1.039.   DOI
39 Tsiambaos, G. and Sabatakakis, N. (2004), "Considerations on strength of intact sedimentary rocks", Eng. Geol., 72(3), 261-273. https://doi.org/10.1016/j.enggeo.2003.10.001.   DOI
40 Sonmez, H., Gokceoglu, C., Medley, E.W., Tuncay, E. and Nefeslioglu, H.A. (2006), "Estimating the uniaxial compressive strength of a volcanic bimrock", J. Rock Mech. Min. Sci., 43(4), 554-561. https://doi.org/10.1016/j.ijrmms.2005.09.014.   DOI
41 Xu, Y., Dai, F., Zhao, T. and Yi, N.X. (2016), "Fracture toughness determination of cracked chevron notched Brazilian disc rock specimen via Griffith energy criterion incorporating realistic fracture profiles", Rock Mech. Rock Eng., 49, 3083-3093. https://doi.org/10.1007/s00603-016-0978-0.   DOI
42 Yaylac, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. http://doi.org/10.12989/sem.2016.57.6.1143.   DOI
43 Yoon, J. (2007), "Hydro-mechanical coupling of shear-induced rock fracturing by bonded particle modeling", Doctoral Dissertation, Ph. D. Thesis, Seoul National University.
44 Yu, K. and Lu, Z. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normal-strength concrete", Comput. Concrete, 15(2), 102-111. http://doi.org/10.12989/cac.2015.15.2.199.
45 Wei, M.D., Dai, F., Xu, N.W., Xu, Y. and Xia, K. (2015), "Three-dimensional numerical evaluation of the progressive fracture mechanism of cracked chevron notched semi-circular bend rock specimens", Eng. Fract. Mech., 134, 286-303. https://doi.org/10.1016/j.engfracmech.2014.11.012.   DOI
46 Ayatollahi, M.R. and Alborzi, M.J. (2013), "Rock fracture toughness testing using SCB specimen", Proceedings of the 13th International Conference on Fracture, Beijing, China, June.
47 Sarfarazi, V. and Haeri, H. (2016a), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.1134/S1062739116020370.   DOI
48 Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2015d), "The HDD analysis of micro cracks initiation, propagation and coalescence in brittle substances", Arab. J. Geosci., 8(5), 2841-2852. https://doi.org/10.1007/s12517-014-1290-5.   DOI
49 Heidari, M., Khanlari, G., Torabi Kaveh, M. and Kargarian, S. (2012), "Predicting the uniaxial compressive and tensile strengths of gypsum rock by point load testing", Rock Mech. Rock Eng., 45(2), 265-273. https://doi.org/10.1007/s00603-011-0196-8.   DOI
50 Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack traversing a plate", J Appl Mech., 24(3), 361-364. https://doi.org/10.1115/1.4011547.   DOI
51 Singh, V.K. and Singh, D.P. (1993), "Correlation between point load index and compressive strength for quartzite rocks", Geotch. Geol. Eng., 11(4), 269-272.   DOI
52 Ayatollahi, M.R. and Aliha, M.R.M. (2005), "Cracked Brazilian disc specimen subjected to mode II deformation", Eng. Fract. Mech., 72, 493-503. https://doi.org/10.1016/j.engfracmech.2004.05.002.   DOI
53 Bieniawski, Z.T. (1975), "The point-load test in geotechnical practice", Eng. Geol., 9(1), 1-11. https://doi.org/10.1016/0013-7952(75)90024-1.   DOI
54 Broch, E. and Franklin, J.A. (1972), "The point-load strength test", J. Rock Mech. Min. Sci. Geomech. Abstr., 9(6), 669-676. https://doi.org/10.1016/0148-9062(72)90030-7.   DOI
55 Celik, S.B. (2008), "Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity", Bull. Eng. Geol. Environ., 67(4), 491-498. https://doi.org/10.1007/s10064-008-0158-x.   DOI
56 Chau, K.T. and Wong, R.H.C. (1996), "Uniaxial compressive strength and point load strength of rocks", J. Rock Mech. Min. Sci. Geomech. Abstr., 33(2), 183-188.   DOI
57 Ayatollahi, M.R. and Aliha, M.R.M. (2008), "On the use of Brazilian disc specimen for calculating mixed mode I-II fracture toughness of rock materials", Eng. Fract. Mech., 75, 4631-4461. https://doi.org/10.1016/j.engfracmech.2008.06.018.   DOI
58 Basu, A. and Aydin, A. (2006), "Predicting uniaxial compressive strength by point load test: Significance of cone penetration", Rock Mech. Rock Eng., 39(5), 483-490. https://doi.org/10.1007/s00603-006-0082-y.   DOI
59 Backers, T. and Stephansson, O. (2012), "ISRM suggested method for the determination of mode II fracture toughness", Rock Mech. Rock Eng., 45, 1011-1022. https://doi.org/10.1007/978-3-319-07713-0_4.   DOI
60 Bagi, K. (2012), "Fundamentals of the discrete element method", Lecture Notes, BME Faculty of Civil Engineering, Budapest, Hungary.
61 Basu, A. and Kamran, M. (2010), "Point load test on schistose rocks and its applicability in predicting uniaxial compressive strength", J. Rock Mech. Min. Sci., 47(5), 823-828. https://doi.org/10.1016/j.ijrmms.2010.04.006.   DOI
62 Basu, A., Mishra, D.A. and Roychowdhury, K. (2013), "Rock failure modes under uniaxial compression, Brazilian, and point load tests", Bull. Eng. Geol. Environ., 72(3-4), 457-475. https://doi.org/10.1007/s10064-013-0505-4.   DOI
63 Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcracks coalescence mechanism in rock-like materials", Strength Mater., 47(1), 740-754. https://doi.org/10.1007/s11223-015-9711-6.   DOI
64 Sonmez, H., Tuncay, E. and Gokceoglu, C. (2004), "Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara agglomerate", J. Rock Mech. Min. Sci., 41(5), 717-729. https://doi.org/10.1016/j.ijrmms.2004.01.011.   DOI
65 Xu, N.W., Dai, F., Wei, M.D., Xu, Y. and Zhao, T. (2015a), "Numerical observation of three dimensional wing-cracking of cracked chevron notched Brazilian disc rock specimen subjected to mixed mode loading", Rock Mech. Rock Eng., 49(1), 79-96. https://doi.org/10.1007/s00603-015-0736-8.   DOI
66 Singh, T.N., Kainthola, A. and Venkatesh, A. (2012), "Correlation between point load index and uniaxial compressive strength for different rock types", Rock Mech. Rock Eng., 45(2), 259-264. https://doi.org/10.1007/s00603-011-0192-z.   DOI
67 Yoon, J. (2004), "Experimental verification of a pts mode II test for rock", Int. J. Rock Mech. Min. Sci., 41, 1-7.
68 Sonmez, H. and Osman, B. (2008), "The limitations of point load index for predicting of strength of rock material and a new approach", Proceedings of the 61st Geological Congress of Turkey, 1, 261-262.
69 Rao, Q., Sun, Z., Wang, G., Xu, J. and Zhang, J. (2001), "Effect of specimen thickness on Mode II fracture toughness of rock", J. Cent. South Univ. Technol., 8, 114-119. https://doi.org/10.1007/s11771-001-0037-0.   DOI
70 Sarfarazi, V. (2016c), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. http://doi.org/10.12989/cac.2016.17.6.723.   DOI
71 Protodyakonov, M.M. and Voblikov, V.S (1957), "Determining the strength of rock on samples of an irregular shape", Ugol., 32(4), 66-78.