Browse > Article
http://dx.doi.org/10.12989/sem.2017.61.3.325

Probability analysis of optimal design for fatigue crack of aluminium plate repaired with bonded composite patch  

Errouane, H. (Laboratoire Structures de Composites et Materiaux innovants, Faculte de Genie Mecanique, Universite des Sciences et de la Technologie d'Oran)
Deghoul, N. (Laboratoire Structures de Composites et Materiaux innovants, Faculte de Genie Mecanique, Universite des Sciences et de la Technologie d'Oran)
Sereir, Z. (Laboratoire Structures de Composites et Materiaux innovants, Faculte de Genie Mecanique, Universite des Sciences et de la Technologie d'Oran)
Chateauneuf, A. (Clermont Universite, Blaise Pascal)
Publication Information
Structural Engineering and Mechanics / v.61, no.3, 2017 , pp. 325-334 More about this Journal
Abstract
In the present study, a numerical model for probability analysis of optimal design of fatigue non-uniform crack growth behaviour of a cracked aluminium 2024 T3 plate repaired with a bonded composite patch is investigated. The proposed 3D numerical model has advanced in literatures, which gathers in a unique study: problems of reliability, optimization, fatigue, cracks and repair of plates subjected to tensile loadings. To achieve this aim, a finite element modelling is carried out to determine the evolution of the stress intensity factor at the crack tip Paris law is used to predict the fatigue life for a give n crack. To have an optimal volume of our patch satisfied the practical fatigue life, a procedure of optimization is proposed. Finally, the probabilistic analysis is performed in order to a show that optimized patch design is influenced by uncertainties related to mechanical and geometrical properties during the manufacturing process.
Keywords
composites; fatigue; optimizations; numerical methods; structural reliability; simulation, fracture mechanics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Baker, A.A., Rose L.R.F. and Jones, R. (2002), Advances in the Bonded Composite Repairs of Metallic Aircraft Structures, Vol. 1, Elsevier Science Publications, London.
2 Brighenti, R. (2007), "Patch repair design optimization for fracture and fatigue improvements of cracked plates", Int. J. Solid. Struct., 44, 1115-1131.   DOI
3 Denney, J.J. and Mall, S. (1997), "Characterization of disbond effects on fatigue crack growth behavior in aluminum plate with bonded composite patch", Eng. Fract. Mech., 57(5), 507-25.   DOI
4 Erouane, H., Sereir, Z. and Chateauneuf, A. (2014), "Numerical model for optimal design of composite patch repair of cracked aluminium plates under tension", Int. J. Adhes. Adhes., 49, 64-72.   DOI
5 Haldar, A. and Mahadevan, S. (2000), Reliability Assessment Using Stochastic Finite Element Analysis, John Wiley, New York, New York.
6 Harman, A.B. and Rider, A.N. (2013), "On the fatigue durability of clad 7075-T6 aluminium alloy bonded joints representative of aircraft repair", Int. J. Adhes. Adhes., 44, 144-156.   DOI
7 Hosseini-Toudeshky, H. and Mohammadi, B. (2009), "Mixedmode numerical and experimental fatigue crack growth analyses of thick aluminium panels repaired with composite patches", Compos. Struct., 91, 1-8.   DOI
8 Hosseini-Toudeshky, H., Mohammadi, B., Sadeghi, G. and Daghyani, H.R. (2007), "Numerical and experimental fatigue crack growth analysis in mode-I for repaired aluminum panels using composite material", Compos. Part A-Appl. S., 38, 1141-1148.   DOI
9 Khiat, M.A., Sereir, Z. and Chateauneuf, A. (2011), "Uncertainties of unidirectional composite strength under tensile loading and variation of environmental condition", Theor. Appl. Fract. Mech., 56, 169-179.   DOI
10 Lee, W.Y. and Lee, J.J. (2004), "Successive 3D FE analysis technique for characterization of fatigue crack growth behavior in composite-repaired aluminum plate", Compos. Struct., 66, 513-520.   DOI
11 Mahadesh Kumar, A. and Hakeem, S.A. (2000), "Optimum design of symmetric composite patch repair to centre cracked metallic sheet", Compos. Struct., 49, 285-292.   DOI
12 Murthy, A.R., Mathew, R.S., Palani, G.S., Gopinath, S. and Iyer, N.R. (2015), "Fracture analysis and remaining life prediction of aluminium alloy 2014a plate panels with concentric stiffeners under fatigue loading", Struct. Eng. Mech., 53(4), 681-702.   DOI
13 Padula, S., Gumbert, C. and Li, W. (2006), "Aerospace Applications of Optimization under Uncertainty", Optim. Eng., 7(3), 317-328.   DOI
14 Paris, P.C. and Erdogan, F. (1963), "Critical analysis of crack propagation laws", Tran. ASME Ser. D: J. Basic Eng., 85, 528-534.   DOI
15 Sekine, H., Yan, B. and Yasuho, T. (2005), "Numerical simulation study of fatigue crack growth behavior of cracked aluminum panels repaired with a FRP composite patch using combined BEM/FEM", Eng. Fract. Mech., 72, 2549-2563.   DOI
16 Yan, Y. (2004), "Design of structure optimization with APDL", J. East China Jiaotong Univ., 4, 52-55.
17 Seo, D.C., Lee, J.J. (2002), "Fatigue crack growth behavior of cracked aluminum plate repaired with composite patch", Compos. Struct., 57, 323-330.   DOI
18 Tsai, G.C. and Shen, S.B. (2004), "Fatigue analysis of cracked thick aluminium plate bonded with composite patches", Compos. Struct., 64, 79-90.   DOI
19 Wang, X., Shi, J., Liu, J., Yang L., Wu, Z. (2014), "Creep behavior of basalt fiber reinforced polymer tendons for prestressing application", Mater. Des., 59, 558-564.   DOI
20 Youn, B.D., Choi, R.J. and Gu, L. (2004), "Reliability-based design optimization for crash worthiness of vehicle side impact", Struct. Multidisc. Optim., 26, 272-283.   DOI