Browse > Article

First-Principles Theoretical Study of the Surface Structure of O/Pd(100)-p($2{\times}2$) and the Effect of H Impurities  

Jung Sung-Chul (Department of Physics, Pohang University of Science and Technology)
Kang Myung-Ho (Department of Physics, Pohang University of Science and Technology)
Publication Information
Journal of the Korean Vacuum Society / v.15, no.4, 2006 , pp. 360-366 More about this Journal
Abstract
We have performed density functional theory calculations for the surface structure of O/Pd(100)-p($2{\times}2$), formed by the adsorption of oxygen atoms of 0.25 ML. The oxygen atoms adsorb preferentially at the fourfold hollow site, and the calculated O-Pd bond length is $2,15{\AA}$, The first interlayer spacing ($d_{12}$) of Pd(100) expands by +0.8% due to the oxygen adsorption, which differs from the experimental value of +3.6% reported by a previous LEED study. Assuming that the LEED sample was possibly contaminated by hydrogen atoms, we also examined the effect of hydrogen impurities on the surface structure. Hydrogen atoms adsorbed on O/Pd(100)-p($2{\times}2$) are found to result in large expansions of $d_{12}$ of Pd(100). Our analysis estimates the amount of hydrogen atoms remaining on the LEED sample as -0.3 ML.
Keywords
Pd(100); Oxygen; Hydrogen; Surface structure; Density functional theory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. H. Rieder and W. Stocker, Surf. Sci. 150, L66 (1985)   DOI   ScienceOn
2 J. Quinn, Y. S. Li, D. Tian, H. Li, F. Jona, and P. M. Marcus, Phys. Rev. B 42, 11348 (1990)   DOI
3 S. Wilke, D. Hennig, and R. L ber, Phys. Rev. B 50, 2548 (1994)
4 S. H. Kim, H. L. Meyerheim, J. Barthel, J. Kirschner, Jikeun Seo, and J. S. Kim, Phys. Rev. B 71, 205418 (2005)   DOI   ScienceOn
5 J. P. Perdew, in Electronic Structure of Solids '91, edited by P. Ziesche, and H. Eschrig (Akademie Verlag, Berlin, 1991)
6 S. L. Chang and P. A. Thiel, J. Chem. Phys. 88, 2071 (1988)   DOI
7 D, Kolthoff, D. J rgens, C. Schwennicke, and H. Pfn r, Surf. Sci. 365, 374 (1996)   DOI   ScienceOn
8 D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)   DOI
9 G. Zheng and E. I. Altman, Surf. Sci. 504, 253 (2002)   DOI
10 S. C. Jung and M. H. Kang, Phys. Rev. B 72, 205419 (2005)   DOI   ScienceOn
11 M. Wilde, M. Matsumoto, K. Fukutani, and T. Aruga, Surf. Sci. 482, 346 (2001)   DOI
12 G. W. Simmons, Y. N. Wang, J. Marcos, and K. Klier, J. Phys. Chem. 95, 4522 (1991)   DOI
13 C. Nyberg and C. G. Tengstal, Surf. Sci. 126, 163 (1983)   DOI
14 G. Kresse and J. Furthmaller, Phys. Rev. B 54, 11169 (1996)   DOI
15 R. J. Behm, K. Christmann, G. Ertl, M. A. Van Hove, P. A. Thiel, and W. H. Weinberg, Surf. Sci. Lett. 88, L59 (1979)   DOI   ScienceOn
16 J. Burchhardt, E. Lundgren, M. M. Nielsen, J. N. Andersen, and D. L. Adams, Surf. Rev. Lett. 3, 1339 (1996)   DOI
17 A. Eichler, J. Hafner, and G. Kresse, J. Phys.: Condens. Matter. 8, 7659 (1996)   DOI   ScienceOn
18 C. Nyberg and C. G. Tengst l, J. Chem. Phys. 80, 3463 (1984)   DOI
19 M. Methfessel, D. Hennig, and M. Scheffler, Phys. Rev. B 46, 4816 (1992)   DOI