Browse > Article

First-principles molecular dynamics study of NO adsorption on Si(001)  

Jeong Sukmin (Department of Physics, Chonbuk National University)
Publication Information
Journal of the Korean Vacuum Society / v.14, no.2, 2005 , pp. 97-102 More about this Journal
Abstract
NO adsorption can be used in synthesizing oxynitride thin films which have potential application in nanodevices. However, it is very difficult to understand the oxynitridation Process since too many factors are involved in it. In this paper, we present our first-principles molecular dynamics calculation of the NO molecule adsorption on the Si(001) surface as the initial stage of the oxynitridation process. The previous first-principles calculation has argued the NO molecule is dissociated with a very small activation barrier, 0.07eV, which acutally corresponds to 1.60eV considering thermodynamics. This is in clear contrast to the observation that NO is dissociated at temperatures as low as 20K From extensive searches of NO on the Si(001) surface, we have found the new dissociation processes that have the much lower activation energies, less than 0.01 eV. We also present the dissociation and penetration processes with the corresponding activation energies and discuss their experimental implications.
Keywords
Molecular adsorption; nitric oxide; molecular dynamics; energy barrier; silicon oxynitride film;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Rosenbaum and L. F. Register, IEEE Trans. Electron Devices 44, 317 (1997)   DOI   ScienceOn
2 M. Carbone, K. Bobrov, G. Comtet, G. Dujardin, and L. Hellner, Surf. Sci. 467, 49 (2000)   DOI   ScienceOn
3 D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)   DOI   ScienceOn
4 H. Fukuda, T. Arakawa, and S. Ohno, Electron. Lett. 26, 1505 (1990)   DOI   ScienceOn
5 P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer Verlag, Berlin, 1991)
6 P. Olivo, T. N. Nguyen, and B. Ricco, IEEE Trans. Electron Devices 35, 2259 (1988)   DOI   ScienceOn
7 G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996)   DOI   ScienceOn
8 H. Hwang, W. Ting, B. Maiti, D.-L. Kwong, and J. Lee, Appl. Phys. Lett. 57, 1010 (1990)   DOI
9 G. Kresse and J. Hafner, Phys. Rev. B 47, 588 (1993)   DOI
10 A. A. Korkin, A. Demkov, N. Tanpipat, and J. Andzelm, J. Chem. Phys. 113, 8237 (2000).   DOI   ScienceOn
11 Y. K. Kim, J. R. Ahn, W. H. Choi, H. S. Lee, and H. W. Yeom, Phys. Rev. B 68, 075323 (2003)   DOI   ScienceOn
12 G. Rangelov, J. Stober, B. Eisenhut, and Th. Fauster, Phys. Rev. B 44, 1954 (1991)   DOI   ScienceOn
13 J. P. Perdew, Electronic Structure of Solids '91, edited by P. Ziesche and H. Eschrig (Academie Verlag, Berlin, 1991)
14 S. Jeong and A. Oshiyama, Phys. Rev. Lett. 86, 3574 (2001)   DOI   ScienceOn
15 Ph. Avouris, F. Bozso, and R. J. Hamers, J. Vac. Sci. Technol. 5, 1387 (1987)   DOI
16 K. Kata, Y. Nakasaki, and T. Uda, Phys. Rev. B 66, 075308 (2002)   DOI   ScienceOn
17 H. Fukuda and S. Nomura, Jpn. J. Appl. Phys. 34, 87 (1995)   DOI
18 Y. D. Chung, J. W. Kim, C. N. Whang, and H. W. Yeom, Phys. Rev. B 65, 155310 (2002)   DOI   ScienceOn
19 L. Verlet, Phys. Rev. 159, 98 (1967)
20 A. G. B. M. Sasse and A. van Silfhout, Phys. Rev. B 40, 1773 (1989)   DOI   ScienceOn